Abstract
Saliva contains two major families of mucins (MG1 and MG2); the polypeptide of the smaller of these glycoproteins (MG2) has been assigned as the product of the MUC7 gene. In this study we have devised a rapid two-step procedure that recovers this glycoprotein essentially free of other components and in sufficient quantity to enable physical and self-interaction studies. Raw saliva was solubilized in 4 M guanidinium chloride and thereafter subjected to Sepharose CL-4B chromatography. The MG2-rich fraction was recovered free from the larger MG1 glycoproteins and also smaller proteins/glycoproteins (molecular mass less than 100 kDa). MG2 glycoproteins were finally purified by anion-exchange chromatography on Mono Q. The purity of the preparation was assessed by SDS/PAGE after radiolabelling of the molecules with [14C]acetic anhydride. Peptide mapping, N-terminal sequencing and amino acid analysis verified the polypeptide of the mucins as the MUC7 gene product. The isolated molecules were examined by electron microscopy and appeared as short flexible worm-like structures 30-120 nm in length. The distribution was heterogeneous, containing a major component with number-average and weight-average lengths of 52 and 55 nm respectively and a minor component with number-average and weight-average lengths of 94 and 98 nm respectively. We propose that the two differently sized populations represent monomeric and dimeric species of the mucins. Gel chromatography performed in 0.2 M NaCl indicated the presence of monomers, dimers and tetramers; an average molecular mass for the preparation was 192 kDa. However, in 4 M guanidinium chloride the molecular mass was 158 kDa and a similar molecular mass (155 kDa) was determined for the mucin preparation after reduction. These results suggest that the mucins might self-associate via a protein-mediated interaction. On the basis of the results a model is proposed for the self-association of the MUC7 mucin, which might be important for its biological function.
Full Text
The Full Text of this article is available as a PDF (692.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguirre A., Testa-Weintraub L. A., Banderas J. A., Haraszthy G. G., Reddy M. S., Levine M. J. Sialochemistry: a diagnostic tool? Crit Rev Oral Biol Med. 1993;4(3-4):343–350. doi: 10.1177/10454411930040031201. [DOI] [PubMed] [Google Scholar]
- Biesbrock A. R., Reddy M. S., Levine M. J. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect Immun. 1991 Oct;59(10):3492–3497. doi: 10.1128/iai.59.10.3492-3497.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobek L. A., Tsai H., Biesbrock A. R., Levine M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem. 1993 Sep 25;268(27):20563–20569. [PubMed] [Google Scholar]
- Cohen R. E., Aguirre A., Neiders M. E., Levine M. J., Jones P. C., Reddy M. S., Haar J. G. Immunochemistry and immunogenicity of low molecular weight human salivary mucin. Arch Oral Biol. 1991;36(5):347–356. doi: 10.1016/0003-9969(91)90004-E. [DOI] [PubMed] [Google Scholar]
- Gerken T. A., Butenhof K. J., Shogren R. Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: carbon-13 NMR studies of ovine submaxillary mucin. Biochemistry. 1989 Jun 27;28(13):5536–5543. doi: 10.1021/bi00439a030. [DOI] [PubMed] [Google Scholar]
- Jourdian G. W., Dean L., Roseman S. The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem. 1971 Jan 25;246(2):430–435. [PubMed] [Google Scholar]
- Koop H. M., Valentijn-Benz M., Nieuw Amerongen A. V., Roukema P. A., de Graaff J. Involvement of human mucous saliva and salivary mucins in the aggregation of the oral bacteria Streptococcus sanguis, Streptococcus oralis, and Streptococcus rattus. Antonie Van Leeuwenhoek. 1990 May;57(4):245–252. doi: 10.1007/BF00400156. [DOI] [PubMed] [Google Scholar]
- Loomis R. E., Prakobphol A., Levine M. J., Reddy M. S., Jones P. C. Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys. 1987 Nov 1;258(2):452–464. doi: 10.1016/0003-9861(87)90366-3. [DOI] [PubMed] [Google Scholar]
- Milne R. W., Dawes C. The relative contributions of different salivary glands to the blood group activity of whole saliva in humans. Vox Sang. 1973 Oct;25(4):298–307. doi: 10.1111/j.1423-0410.1973.tb04377.x. [DOI] [PubMed] [Google Scholar]
- Murray P. A., Levine M. J., Tabak L. A., Reddy M. S. Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAc alpha 2, 3Ga1 beta 1, 3Ga1NAc sequence. Biochem Biophys Res Commun. 1982 May 31;106(2):390–396. doi: 10.1016/0006-291x(82)91122-6. [DOI] [PubMed] [Google Scholar]
- Prakobphol A., Levine M. J., Tabak L. A., Reddy M. S. Purification of a low-molecular-weight, mucin-type glycoprotein from human submandibular-sublingual saliva. Carbohydr Res. 1982 Oct 1;108(1):111–122. doi: 10.1016/s0008-6215(00)81896-0. [DOI] [PubMed] [Google Scholar]
- Ramasubbu N., Reddy M. S., Bergey E. J., Haraszthy G. G., Soni S. D., Levine M. J. Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva. Biochem J. 1991 Dec 1;280(Pt 2):341–352. doi: 10.1042/bj2800341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy M. S., Levine M. J., Prakobphol A. Oligosaccharide structures of the low-molecular-weight salivary mucin from a normal individual and one with cystic fibrosis. J Dent Res. 1985 Jan;64(1):33–36. doi: 10.1177/00220345850640010601. [DOI] [PubMed] [Google Scholar]
- Sheehan J. K., Carlstedt I. Electron microscopy of cervical-mucus glycoproteins and fragments therefrom. The use of colloidal gold to make visible 'naked' protein regions. Biochem J. 1990 Jan 1;265(1):169–177. doi: 10.1042/bj2650169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabak L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol. 1995;57:547–564. doi: 10.1146/annurev.ph.57.030195.002555. [DOI] [PubMed] [Google Scholar]
- Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982 Feb;11(1):1–17. doi: 10.1111/j.1600-0714.1982.tb00138.x. [DOI] [PubMed] [Google Scholar]
- Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
- Thornton D. J., Howard M., Khan N., Sheehan J. K. Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem. 1997 Apr 4;272(14):9561–9566. doi: 10.1074/jbc.272.14.9561. [DOI] [PubMed] [Google Scholar]