Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):423–429. doi: 10.1042/bj3340423

Prion protein expression and superoxide dismutase activity.

D R Brown 1, A Besinger 1
PMCID: PMC1219705  PMID: 9716501

Abstract

The function of the prion protein (PrPc) remains uncertain. It has been suggested that prion protein expression may aid cellular resistance to oxidative stress by influencing the activity of Cu/Zn superoxide dismutase (Cu,Zn SOD). The activity of Cu,Zn SOD was investigated in mice with different levels of PrPc expression. Increasing levels of PrPc expression were linked to increased levels of Cu,Zn SOD activity. Western-blot and Northern-blot analysis indicated that mice either lacking or overexpressing PrPc had levels of Cu,Zn SOD mRNA equivalent to those expressed in wild-type mice. Mice overexpressing the prion protein had lower levels of resistance to oxidative stress but higher expression levels of glutathione peroxidase, probably due to increased levels of hydrogen peroxide produced by increased Cu,Zn SOD activity. When cells were metabolically labelled with radioactive copper, increased radioactivity was immunoprecipitated with Cu,Zn SOD from mice with higher levels of PrPc. In addition, diethyldithiocarbamate, a copper chelator that inactivates Cu,Zn SOD by capturing copper from the molecule, is more able to inactivate Cu,Zn SOD expressed in animals with higher levels of PrPc. As recent studies have suggested that PrPc may regulate some aspect of copper metabolism, it is suggested that PrPc expression may regulate Cu,Zn SOD activity by influencing copper incorporation into the molecule.

Full Text

The Full Text of this article is available as a PDF (520.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  2. Bewley G. C. cDNA and deduced amino acid sequence of murine Cu-Zn superoxide dismutase. Nucleic Acids Res. 1988 Mar 25;16(6):2728–2728. doi: 10.1093/nar/16.6.2728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolton D. C., McKinley M. P., Prusiner S. B. Identification of a protein that purifies with the scrapie prion. Science. 1982 Dec 24;218(4579):1309–1311. doi: 10.1126/science.6815801. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Herms J. W., Schmidt B., Kretzschmar H. A. PrP and beta-amyloid fragments activate different neurotoxic mechanisms in cultured mouse cells. Eur J Neurosci. 1997 Jun;9(6):1162–1169. doi: 10.1111/j.1460-9568.1997.tb01470.x. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R., Herms J., Kretzschmar H. A. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport. 1994 Oct 27;5(16):2057–2060. doi: 10.1097/00001756-199410270-00017. [DOI] [PubMed] [Google Scholar]
  6. Brown D. R., Qin K., Herms J. W., Madlung A., Manson J., Strome R., Fraser P. E., Kruck T., von Bohlen A., Schulz-Schaeffer W. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 18;390(6661):684–687. doi: 10.1038/37783. [DOI] [PubMed] [Google Scholar]
  7. Brown D. R., Schmidt B., Kretzschmar H. A. Effects of copper on survival of prion protein knockout neurons and glia. J Neurochem. 1998 Apr;70(4):1686–1693. doi: 10.1046/j.1471-4159.1998.70041686.x. [DOI] [PubMed] [Google Scholar]
  8. Brown D. R., Schmidt B., Kretzschmar H. A. Effects of oxidative stress on prion protein expression in PC12 cells. Int J Dev Neurosci. 1997 Dec;15(8):961–972. doi: 10.1016/s0736-5748(97)00042-7. [DOI] [PubMed] [Google Scholar]
  9. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  10. Brown D. R., Schulz-Schaeffer W. J., Schmidt B., Kretzschmar H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997 Jul;146(1):104–112. doi: 10.1006/exnr.1997.6505. [DOI] [PubMed] [Google Scholar]
  11. Büeler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., Weissmann C. Mice devoid of PrP are resistant to scrapie. Cell. 1993 Jul 2;73(7):1339–1347. doi: 10.1016/0092-8674(93)90360-3. [DOI] [PubMed] [Google Scholar]
  12. Büeler H., Fischer M., Lang Y., Bluethmann H., Lipp H. P., DeArmond S. J., Prusiner S. B., Aguet M., Weissmann C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992 Apr 16;356(6370):577–582. doi: 10.1038/356577a0. [DOI] [PubMed] [Google Scholar]
  13. Cocco D., Calabrese L., Rigo A., Marmocchi F., Rotilio G. Preparation of selectively metal-free and metal-substituted derivatives by reaction of Cu--Zn superoxide dismutase with diethyldithiocarbamate. Biochem J. 1981 Dec 1;199(3):675–680. doi: 10.1042/bj1990675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Collinge J., Whittington M. A., Sidle K. C., Smith C. J., Palmer M. S., Clarke A. R., Jefferys J. G. Prion protein is necessary for normal synaptic function. Nature. 1994 Jul 28;370(6487):295–297. doi: 10.1038/370295a0. [DOI] [PubMed] [Google Scholar]
  15. DiSilvestre D., Kleeberger S. R., Johns J., Levitt R. C. Structure and DNA sequence of the mouse MnSOD gene. Mamm Genome. 1995 Apr;6(4):281–284. doi: 10.1007/BF00352417. [DOI] [PubMed] [Google Scholar]
  16. Elroy-Stein O., Bernstein Y., Groner Y. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 1986 Mar;5(3):615–622. doi: 10.1002/j.1460-2075.1986.tb04255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fischer M., Rülicke T., Raeber A., Sailer A., Moser M., Oesch B., Brandner S., Aguzzi A., Weissmann C. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 1996 Mar 15;15(6):1255–1264. [PMC free article] [PubMed] [Google Scholar]
  18. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  19. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
  20. Hope J., Multhaup G., Reekie L. J., Kimberlin R. H., Beyreuther K. Molecular pathology of scrapie-associated fibril protein (PrP) in mouse brain affected by the ME7 strain of scrapie. Eur J Biochem. 1988 Mar 1;172(2):271–277. doi: 10.1111/j.1432-1033.1988.tb13883.x. [DOI] [PubMed] [Google Scholar]
  21. Hornshaw M. P., McDermott J. R., Candy J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):621–629. doi: 10.1006/bbrc.1995.1233. [DOI] [PubMed] [Google Scholar]
  22. Hornshaw M. P., McDermott J. R., Candy J. M., Lakey J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun. 1995 Sep 25;214(3):993–999. doi: 10.1006/bbrc.1995.2384. [DOI] [PubMed] [Google Scholar]
  23. Hsiao K., Prusiner S. B. Inherited human prion diseases. Neurology. 1990 Dec;40(12):1820–1827. doi: 10.1212/wnl.40.12.1820. [DOI] [PubMed] [Google Scholar]
  24. Kinouchi H., Epstein C. J., Mizui T., Carlson E., Chen S. F., Chan P. H. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11158–11162. doi: 10.1073/pnas.88.24.11158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kretzschmar H. A. Human prion diseases (spongiform encephalopathies). Arch Virol Suppl. 1993;7:261–293. doi: 10.1007/978-3-7091-9300-6_21. [DOI] [PubMed] [Google Scholar]
  26. Kretzschmar H. A., Prusiner S. B., Stowring L. E., DeArmond S. J. Scrapie prion proteins are synthesized in neurons. Am J Pathol. 1986 Jan;122(1):1–5. [PMC free article] [PubMed] [Google Scholar]
  27. Matsui Y., Zsebo K. M., Hogan B. L. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature. 1990 Oct 18;347(6294):667–669. doi: 10.1038/347667a0. [DOI] [PubMed] [Google Scholar]
  28. Misra H. P. Reaction of copper-zinc superoxide dismutase with diethyldithiocarbamate. J Biol Chem. 1979 Nov 25;254(22):11623–11628. [PubMed] [Google Scholar]
  29. Miura T., Hori-i A., Takeuchi H. Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 1996 Nov 4;396(2-3):248–252. doi: 10.1016/0014-5793(96)01104-0. [DOI] [PubMed] [Google Scholar]
  30. Moser M., Colello R. J., Pott U., Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron. 1995 Mar;14(3):509–517. doi: 10.1016/0896-6273(95)90307-0. [DOI] [PubMed] [Google Scholar]
  31. Oberley L. W., Spitz D. R. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 1984;105:457–464. doi: 10.1016/s0076-6879(84)05064-3. [DOI] [PubMed] [Google Scholar]
  32. Pal R., Nath R., Gill K. D. Lipid peroxidation and antioxidant defense enzymes in various regions of adult rat brain after co-exposure to cadmium and ethanol. Pharmacol Toxicol. 1993 Oct;73(4):209–214. doi: 10.1111/j.1600-0773.1993.tb01565.x. [DOI] [PubMed] [Google Scholar]
  33. Pan K. M., Stahl N., Prusiner S. B. Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Sci. 1992 Oct;1(10):1343–1352. doi: 10.1002/pro.5560011014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  35. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  36. Rossi L., Ciriolo M. R., Marchese E., De Martino A., Giorgi M., Rotilio G. Differential decrease of copper content and of copper binding to superoxide dismutase in liver, heart and brain of copper-deficient rats. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1028–1034. doi: 10.1006/bbrc.1994.2285. [DOI] [PubMed] [Google Scholar]
  37. Rothstein J. D., Bristol L. A., Hosler B., Brown R. H., Jr, Kuncl R. W. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4155–4159. doi: 10.1073/pnas.91.10.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stahl N., Borchelt D. R., Prusiner S. B. Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry. 1990 Jun 5;29(22):5405–5412. doi: 10.1021/bi00474a028. [DOI] [PubMed] [Google Scholar]
  39. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A., Manson J. C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996 Apr 18;380(6575):639–642. doi: 10.1038/380639a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES