Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):437–445. doi: 10.1042/bj3340437

Detailed characterization of a cyclophilin from the human malaria parasite Plasmodium falciparum.

M Berriman 1, A H Fairlamb 1
PMCID: PMC1219707  PMID: 9716503

Abstract

Cyclosporin (Cs) A has pronounced antimalarial activity in vitro and in vivo. In other organisms, the drug is thought to exert its effects either by inhibiting the peptidylprolyl cis/trans isomerase activity of cyclophilin (CyP) or by forming a CyP-CsA complex that inhibits the phosphatase activity of calcineurin. We have cloned and overexpressed in Escherichia coli a gene encoding a CyP from Plasmodium falciparum (PfCyP19) that is located on chromosome 3. The sequence of PfCyP19 shows remarkable sequence identity with human CyPA and, unlike the two previously identified CyPs from P. falciparum, PfCyP19 has no signal peptide or N-terminal sequence extension, suggesting a cytosolic localization. All the residues implicated in the recognition of the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide are conserved, resulting in characteristically high Michaelis-Menten and specificity constants (Km>>120 microM, kcat/Km=1.2x10(7) M-1.s-1 respectively). As the first line in the functional characterization of this enzyme, we have assessed its binding affinity for CsA. In accordance with its tryptophan-containing CsA-binding domain, PfCyP19 binds CsA with high affinity (Kd=13 nM, Ki=6.9 nM). Twelve CsA analogues were also found to possess Ki values similar to CsA, with the notable exceptions of Val2-Cs (Ki=218 nM) and Thr2-Cs (Ki=690 nM). The immunosuppressants rapamycin and FK506 were inactive as inhibitors, consistent with other members of the CyP family of rotamases. The CsA analogues were also assessed as inhibitors of P. falciparum growth in vitro. Although their antimalarial activity did not correlate with inhibition of enzyme activity, residues 3 and 4 of CsA appeared to be important for inhibition of parasite growth and residues 1 and 2 for PfCyP19 inhibition. We propose that a malarial CyP-CsA complex presents residues 3 and 4 as part of an 'effector surface' for recognition by a downstream target, similar to the proposed mechanism for T-cell immunosuppression.

Full Text

The Full Text of this article is available as a PDF (712.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. K., Colley N. J., Zuker C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 1994 Oct 17;13(20):4886–4895. doi: 10.1002/j.1460-2075.1994.tb06816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beals C. R., Clipstone N. A., Ho S. N., Crabtree G. R. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 1997 Apr 1;11(7):824–834. doi: 10.1101/gad.11.7.824. [DOI] [PubMed] [Google Scholar]
  3. Bell A., Wernli B., Franklin R. M. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. Biochem Pharmacol. 1994 Aug 3;48(3):495–503. doi: 10.1016/0006-2952(94)90279-8. [DOI] [PubMed] [Google Scholar]
  4. Bergsma D. J., Eder C., Gross M., Kersten H., Sylvester D., Appelbaum E., Cusimano D., Livi G. P., McLaughlin M. M., Kasyan K. The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem. 1991 Dec 5;266(34):23204–23214. [PubMed] [Google Scholar]
  5. Bose S., Mücke M., Freedman R. B. The characterization of a cyclophilin-type peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen. Biochem J. 1994 Jun 15;300(Pt 3):871–875. doi: 10.1042/bj3000871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breuder T., Hemenway C. S., Movva N. R., Cardenas M. E., Heitman J. Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5372–5376. doi: 10.1073/pnas.91.12.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis E. S., Becker A., Heitman J., Hall M. N., Brennan M. B. A yeast cyclophilin gene essential for lactate metabolism at high temperature. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11169–11173. doi: 10.1073/pnas.89.23.11169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dhillon N, Thorner J. Immunophilins in the Yeast Saccharomyces cerevisiae: A Different Spin on Proline Rotamases. Methods. 1996 Apr;9(2):165–176. doi: 10.1006/meth.1996.0023. [DOI] [PubMed] [Google Scholar]
  9. Dolinski K., Muir S., Cardenas M., Heitman J. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13093–13098. doi: 10.1073/pnas.94.24.13093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duina A. A., Marsh J. A., Gaber R. F. Identification of two CyP-40-like cyclophilins in Saccharomyces cerevisiae, one of which is required for normal growth. Yeast. 1996 Aug;12(10):943–952. doi: 10.1002/(sici)1097-0061(199608)12:10<943::aid-yea997>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  11. Ferreira P. A., Nakayama T. A., Travis G. H. Interconversion of red opsin isoforms by the cyclophilin-related chaperone protein Ran-binding protein 2. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1556–1561. doi: 10.1073/pnas.94.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fischer G., Bang H., Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [PubMed] [Google Scholar]
  13. Fischer G., Wittmann-Liebold B., Lang K., Kiefhaber T., Schmid F. X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature. 1989 Feb 2;337(6206):476–478. doi: 10.1038/337476a0. [DOI] [PubMed] [Google Scholar]
  14. Francis S. E., Sullivan D. J., Jr, Goldberg D. E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51:97–123. doi: 10.1146/annurev.micro.51.1.97. [DOI] [PubMed] [Google Scholar]
  15. Freskgård P. O., Bergenhem N., Jonsson B. H., Svensson M., Carlsson U. Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science. 1992 Oct 16;258(5081):466–468. doi: 10.1126/science.1357751. [DOI] [PubMed] [Google Scholar]
  16. Fruman D. A., Burakoff S. J., Bierer B. E. Immunophilins in protein folding and immunosuppression. FASEB J. 1994 Apr 1;8(6):391–400. doi: 10.1096/fasebj.8.6.7513288. [DOI] [PubMed] [Google Scholar]
  17. Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993 Sep 15;216(3):689–707. doi: 10.1111/j.1432-1033.1993.tb18189.x. [DOI] [PubMed] [Google Scholar]
  18. Gamble T. R., Vajdos F. F., Yoo S., Worthylake D. K., Houseweart M., Sundquist W. I., Hill C. P. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996 Dec 27;87(7):1285–1294. doi: 10.1016/s0092-8674(00)81823-1. [DOI] [PubMed] [Google Scholar]
  19. Handschumacher R. E., Harding M. W., Rice J., Drugge R. J., Speicher D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. doi: 10.1126/science.6238408. [DOI] [PubMed] [Google Scholar]
  20. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. High K. P., Handschumacher R. E. Immunity, microbial pathogenesis, and immunophilins: finding the keys, now where are the locks? Infect Agents Dis. 1992 Jun;1(3):121–135. [PubMed] [Google Scholar]
  22. Hirtzlin J., Färber P. M., Franklin R. M., Bell A. Molecular and biochemical characterization of a Plasmodium falciparum cyclophilin containing a cleavable signal sequence. Eur J Biochem. 1995 Sep 15;232(3):765–772. [PubMed] [Google Scholar]
  23. Holzman T. F., Egan D. A., Edalji R., Simmer R. L., Helfrich R., Taylor A., Burres N. S. Preliminary characterization of a cloned neutral isoelectric form of the human peptidyl prolyl isomerase cyclophilin. J Biol Chem. 1991 Feb 5;266(4):2474–2479. [PubMed] [Google Scholar]
  24. Kern G., Kern D., Schmid F. X., Fischer G. Reassessment of the putative chaperone function of prolyl-cis/trans-isomerases. FEBS Lett. 1994 Jul 11;348(2):145–148. doi: 10.1016/0014-5793(94)00591-5. [DOI] [PubMed] [Google Scholar]
  25. Kieffer L. J., Seng T. W., Li W., Osterman D. G., Handschumacher R. E., Bayney R. M. Cyclophilin-40, a protein with homology to the P59 component of the steroid receptor complex. Cloning of the cDNA and further characterization. J Biol Chem. 1993 Jun 15;268(17):12303–12310. [PubMed] [Google Scholar]
  26. Knobloch J., Henk M. Screening for malaria by determination of parasite-specific lactate dehydrogenase. Trans R Soc Trop Med Hyg. 1995 May-Jun;89(3):269–270. doi: 10.1016/0035-9203(95)90533-2. [DOI] [PubMed] [Google Scholar]
  27. Kocken C. H., van der Wel A., Rosenwirth B., Thomas A. W. Plasmodium vivax: in vitro antiparasitic effect of cyclosporins. Exp Parasitol. 1996 Dec;84(3):439–443. doi: 10.1006/expr.1996.0132. [DOI] [PubMed] [Google Scholar]
  28. Kofron J. L., Kuzmic P., Kishore V., Colón-Bonilla E., Rich D. H. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry. 1991 Jun 25;30(25):6127–6134. doi: 10.1021/bi00239a007. [DOI] [PubMed] [Google Scholar]
  29. Liu J., Albers M. W., Chen C. M., Schreiber S. L., Walsh C. T. Cloning, expression, and purification of human cyclophilin in Escherichia coli and assessment of the catalytic role of cysteines by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2304–2308. doi: 10.1073/pnas.87.6.2304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu J., Chen C. M., Walsh C. T. Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. Biochemistry. 1991 Mar 5;30(9):2306–2310. doi: 10.1021/bi00223a003. [DOI] [PubMed] [Google Scholar]
  31. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  32. Makler M. T., Hinrichs D. J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg. 1993 Feb;48(2):205–210. doi: 10.4269/ajtmh.1993.48.205. [DOI] [PubMed] [Google Scholar]
  33. Nickell S. P., Scheibel L. W., Cole G. A. Inhibition by cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infect Immun. 1982 Sep;37(3):1093–1100. doi: 10.1128/iai.37.3.1093-1100.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  35. Pflügl G., Kallen J., Schirmer T., Jansonius J. N., Zurini M. G., Walkinshaw M. D. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature. 1993 Jan 7;361(6407):91–94. doi: 10.1038/361091a0. [DOI] [PubMed] [Google Scholar]
  36. Price E. R., Zydowsky L. D., Jin M. J., Baker C. H., McKeon F. D., Walsh C. T. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1903–1907. doi: 10.1073/pnas.88.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ratajczak T., Carrello A., Mark P. J., Warner B. J., Simpson R. J., Moritz R. L., House A. K. The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59). J Biol Chem. 1993 Jun 25;268(18):13187–13192. [PubMed] [Google Scholar]
  38. Reddy G. R. Cloning and characterization of a Plasmodium falciparum cyclophilin gene that is stage-specifically expressed. Mol Biochem Parasitol. 1995 Jul;73(1-2):111–121. doi: 10.1016/0166-6851(95)00103-8. [DOI] [PubMed] [Google Scholar]
  39. Scheibel L. W., Colombani P. M., Hess A. D., Aikawa M., Atkinson C. T., Milhous W. K. Calcium and calmodulin antagonists inhibit human malaria parasites (Plasmodium falciparum): implications for drug design. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7310–7314. doi: 10.1073/pnas.84.20.7310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sherry B., Zybarth G., Alfano M., Dubrovsky L., Mitchell R., Rich D., Ulrich P., Bucala R., Cerami A., Bukrinsky M. Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1758–1763. doi: 10.1073/pnas.95.4.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Silverman J. A., Hayes M. L., Luft B. J., Joiner K. A. Characterization of anti-Toxoplasma activity of SDZ 215-918, a cyclosporin derivative lacking immunosuppressive and peptidyl-prolyl-isomerase-inhibiting activity: possible role of a P glycoprotein in Toxoplasma physiology. Antimicrob Agents Chemother. 1997 Sep;41(9):1859–1866. doi: 10.1128/aac.41.9.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Takahashi N., Hayano T., Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature. 1989 Feb 2;337(6206):473–475. doi: 10.1038/337473a0. [DOI] [PubMed] [Google Scholar]
  43. Taylor P., Husi H., Kontopidis G., Walkinshaw M. D. Structures of cyclophilin-ligand complexes. Prog Biophys Mol Biol. 1997;67(2-3):155–181. doi: 10.1016/s0079-6107(97)00014-x. [DOI] [PubMed] [Google Scholar]
  44. Thommen-Scott K. Antimalarial activity of cyclosporin A. Agents Actions. 1981 Dec;11(6-7):770–773. doi: 10.1007/BF01978803. [DOI] [PubMed] [Google Scholar]
  45. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  46. Weber J. L. Molecular biology of malaria parasites. Exp Parasitol. 1988 Aug;66(2):143–170. doi: 10.1016/0014-4894(88)90087-2. [DOI] [PubMed] [Google Scholar]
  47. Zhao Y., Ke H. Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization. Biochemistry. 1996 Jun 11;35(23):7356–7361. doi: 10.1021/bi9602775. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES