Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):457–461. doi: 10.1042/bj3340457

Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M.

J Y Lee 1, L G Leonhardt 1, L M Obeid 1
PMCID: PMC1219709  PMID: 9716505

Abstract

Ceramide functions as a growth-inhibitory lipid-signalling molecule and might have a role in mediating the effects of extracellular agents on cell growth, differentiation and senescence. Here we investigate the roles of ceramide in cell cycle progression. With the use of the model of serum withdrawal, we were able to synchronize Wi-38 human diploid fibroblasts at different stages of cell cycle. Serum stimulation resulted in G0 to G1/S progression as determined by flow cytometric analysis and [3H]thymidine incorporation. Analyses of endogenous ceramide levels demonstrated that ceramide levels remained relatively constant on serum stimulation, indicating that ceramide might not be critical during G1/S transition. Treating exponentially growing Wi-38 human diploid fibroblasts with nocodazole led to cell cycle arrest at the G2/M phase of the cell cycle; 2 h after the removal of nocodazole, retinoblastoma (Rb) protein became dephosphorylated and the cells exited from G2/M and moved to the G1 phase of the new cycle. When cells were released from G2/M block by nocodazole, and before Rb protein dephosphorylation, endogenous ceramide levels transiently increased up to 2-fold at 0.5 h after the removal of nocodazole. Fumonisin B1, an inhibitor of ceramide synthase, inhibited the elevation of ceramide levels. Desipramine and SR33557, both acid sphingomyelinase inhibitors, did not have an appreciable effect on the elevation of ceramide levels. Furthermore, fumonisin B1 inhibited Rb protein dephosphorylation induced by endogenous ceramide but not by exogenous ceramide. These results demonstrate for the first time changes in ceramide during cell cycle progression and suggest that ceramide synthesized de novo might function as an endogenous modulator of Rb protein and cell cycle progression.

Full Text

The Full Text of this article is available as a PDF (347.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Chao R., Khan W., Hannun Y. A. Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J Biol Chem. 1992 Nov 25;267(33):23459–23462. [PubMed] [Google Scholar]
  3. Chen P. L., Scully P., Shew J. Y., Wang J. Y., Lee W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell. 1989 Sep 22;58(6):1193–1198. doi: 10.1016/0092-8674(89)90517-5. [DOI] [PubMed] [Google Scholar]
  4. Dbaibo G. S., Pushkareva M. Y., Jayadev S., Schwarz J. K., Horowitz J. M., Obeid L. M., Hannun Y. A. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1347–1351. doi: 10.1073/pnas.92.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeCaprio J. A., Ludlow J. W., Lynch D., Furukawa Y., Griffin J., Piwnica-Worms H., Huang C. M., Livingston D. M. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell. 1989 Sep 22;58(6):1085–1095. doi: 10.1016/0092-8674(89)90507-2. [DOI] [PubMed] [Google Scholar]
  6. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  7. Dressler K. A., Mathias S., Kolesnick R. N. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science. 1992 Mar 27;255(5052):1715–1718. doi: 10.1126/science.1313189. [DOI] [PubMed] [Google Scholar]
  8. Higuchi M., Singh S., Jaffrezou J. P., Aggarwal B. B. Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor-kappa B activation. J Immunol. 1996 Jul 1;157(1):297–304. [PubMed] [Google Scholar]
  9. Hurwitz R., Ferlinz K., Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler. 1994 Jul;375(7):447–450. doi: 10.1515/bchm3.1994.375.7.447. [DOI] [PubMed] [Google Scholar]
  10. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  11. Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lee J. Y., Hannun Y. A., Obeid L. M. Ceramide inactivates cellular protein kinase Calpha. J Biol Chem. 1996 May 31;271(22):13169–13174. doi: 10.1074/jbc.271.22.13169. [DOI] [PubMed] [Google Scholar]
  14. Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
  15. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  16. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  17. Rani C. S., Abe A., Chang Y., Rosenzweig N., Saltiel A. R., Radin N. S., Shayman J. A. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J Biol Chem. 1995 Feb 10;270(6):2859–2867. doi: 10.1074/jbc.270.6.2859. [DOI] [PubMed] [Google Scholar]
  18. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  19. Smith E. R., Merrill A. H., Jr Differential roles of de novo sphingolipid biosynthesis and turnover in the "burst" of free sphingosine and sphinganine, and their 1-phosphates and N-acyl-derivatives, that occurs upon changing the medium of cells in culture. J Biol Chem. 1995 Aug 11;270(32):18749–18758. doi: 10.1074/jbc.270.32.18749. [DOI] [PubMed] [Google Scholar]
  20. Sterner J. M., Murata Y., Kim H. G., Kennett S. B., Templeton D. J., Horowitz J. M. Detection of a novel cell cycle-regulated kinase activity that associates with the amino terminus of the retinoblastoma protein in G2/M phases. J Biol Chem. 1995 Apr 21;270(16):9281–9288. doi: 10.1074/jbc.270.16.9281. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Venable M. E., Blobe G. C., Obeid L. M. Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem. 1994 Oct 21;269(42):26040–26044. [PubMed] [Google Scholar]
  23. Venable M. E., Lee J. Y., Smyth M. J., Bielawska A., Obeid L. M. Role of ceramide in cellular senescence. J Biol Chem. 1995 Dec 22;270(51):30701–30708. doi: 10.1074/jbc.270.51.30701. [DOI] [PubMed] [Google Scholar]
  24. Walker P. R., Kwast-Welfeld J., Gourdeau H., Leblanc J., Neugebauer W., Sikorska M. Relationship between apoptosis and the cell cycle in lymphocytes: roles of protein kinase C, tyrosine phosphorylation, and AP1. Exp Cell Res. 1993 Jul;207(1):142–151. doi: 10.1006/excr.1993.1173. [DOI] [PubMed] [Google Scholar]
  25. Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill A. H., Jr Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem. 1991 Aug 5;266(22):14486–14490. [PubMed] [Google Scholar]
  26. Zieve G. W., Turnbull D., Mullins J. M., McIntosh J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res. 1980 Apr;126(2):397–405. doi: 10.1016/0014-4827(80)90279-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES