Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 1;334(Pt 2):463–467. doi: 10.1042/bj3340463

Inactivation of eukaryotic initiation factor 2B in vitro by heat shock.

G C Scheper 1, A A Thomas 1, R van Wijk 1
PMCID: PMC1219710  PMID: 9716506

Abstract

Protein synthesis in rat H35 Reuber hepatoma cells is rapidly inhibited on heat shock. At mild heat-shock temperatures the main cause for inhibition is the inactivation of the guanine nucleotide exchange factor eukaryotic initiation factor 2B (eIF2B); under more severe heat-shock conditions the activity of several initiation factors is compromised. eIF2B is required for GDP/GTP exchange on eIF2, which delivers methionyl-tRNA to the 40 S ribosomal subunit. We have tried to elucidate the mechanism underlying the inactivation of eIF2B by assays in vitro. Incubation of cell extracts at 41 degreesC or higher led to the inactivation of eIF2B. In agreement with observations in cells exposed to mild heat shocks, the thermal inactivation of eIF2B could be ascribed to neither eIF2alpha phosphorylation nor the induction of another inhibitor. With the use of glycerol gradients we show that eIF2B forms aggregates in heat-treated extracts. Furthermore eIF2B activity is protected against heat shock in thermotolerant cells. Taken together, these results suggest a role for chaperones in the control of eIF2B activity.

Full Text

The Full Text of this article is available as a PDF (357.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellmann K., Jättelä M., Wissing D., Burkart V., Kolb H. Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett. 1996 Aug 5;391(1-2):185–188. doi: 10.1016/0014-5793(96)00730-2. [DOI] [PubMed] [Google Scholar]
  2. Benne R., Hershey J. W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem. 1978 May 10;253(9):3078–3087. [PubMed] [Google Scholar]
  3. Brostrom C. O., Prostko C. R., Kaufman R. J., Brostrom M. A. Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems. Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2alpha kinase. J Biol Chem. 1996 Oct 4;271(40):24995–25002. doi: 10.1074/jbc.271.40.24995. [DOI] [PubMed] [Google Scholar]
  4. Ciavarra R. P., Duvall W., Castora F. J. Induction of thermotolerance in T cells protects nuclear DNA topoisomerase I from heat stress. Biochem Biophys Res Commun. 1992 Jul 15;186(1):166–172. doi: 10.1016/s0006-291x(05)80789-2. [DOI] [PubMed] [Google Scholar]
  5. DeGracia D. J., Sullivan J. M., Neumar R. W., Alousi S. S., Hikade K. R., Pittman J. E., White B. C., Rafols J. A., Krause G. S. Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2 alpha. J Cereb Blood Flow Metab. 1997 Dec;17(12):1291–1302. doi: 10.1097/00004647-199712000-00004. [DOI] [PubMed] [Google Scholar]
  6. Dholakia J. N., Mueser T. C., Woodley C. L., Parkhurst L. J., Wahba A. J. The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6746–6750. doi: 10.1073/pnas.83.18.6746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubois M. F., Hovanessian A. G., Bensaude O. Heat-shock-induced denaturation of proteins. Characterization of the insolubilization of the interferon-induced p68 kinase. J Biol Chem. 1991 May 25;266(15):9707–9711. [PubMed] [Google Scholar]
  8. Duncan R. F., Hershey J. W. Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J Cell Biol. 1989 Oct;109(4 Pt 1):1467–1481. doi: 10.1083/jcb.109.4.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heads R. J., Latchman D. S., Yellon D. M. Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress. J Mol Cell Cardiol. 1994 Jun;26(6):695–699. doi: 10.1006/jmcc.1994.1084. [DOI] [PubMed] [Google Scholar]
  10. Kampinga H. H., Konings A. W., Evers A. J., Brunsting J. F., Misfud N., Anderson R. L. Resistance to heat radiosensitization and protein damage in thermotolerant and thermoresistant cells. Int J Radiat Biol. 1997 Mar;71(3):315–326. doi: 10.1080/095530097144201. [DOI] [PubMed] [Google Scholar]
  11. Kimball S. R., Mellor H., Flowers K. M., Jefferson L. S. Role of translation initiation factor eIF-2B in the regulation of protein synthesis in mammalian cells. Prog Nucleic Acid Res Mol Biol. 1996;54:165–196. doi: 10.1016/s0079-6603(08)60363-3. [DOI] [PubMed] [Google Scholar]
  12. Landry J., Chrétien P., Lambert H., Hickey E., Weber L. A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol. 1989 Jul;109(1):7–15. doi: 10.1083/jcb.109.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindquist S. Regulation of protein synthesis during heat shock. Nature. 1981 Sep 24;293(5830):311–314. doi: 10.1038/293311a0. [DOI] [PubMed] [Google Scholar]
  14. Martin J., Horwich A. L., Hartl F. U. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science. 1992 Nov 6;258(5084):995–998. doi: 10.1126/science.1359644. [DOI] [PubMed] [Google Scholar]
  15. Matts R. L., Hurst R., Xu Z. Denatured proteins inhibit translation in hemin-supplemented rabbit reticulocyte lysate by inducing the activation of the heme-regulated eIF-2 alpha kinase. Biochemistry. 1993 Jul 27;32(29):7323–7328. doi: 10.1021/bi00080a001. [DOI] [PubMed] [Google Scholar]
  16. Matts R. L., Xu Z., Pal J. K., Chen J. J. Interactions of the heme-regulated eIF-2 alpha kinase with heat shock proteins in rabbit reticulocyte lysates. J Biol Chem. 1992 Sep 5;267(25):18160–18167. [PubMed] [Google Scholar]
  17. Mehta H. B., Woodley C. L., Wahba A. J. Protein synthesis in brine shrimp embryos and rabbit reticulocytes. The effect of Mg2+ on binary (eukaryotic initiation factor 2 X GDP) and ternary (eukaryotic initiation factor 2 X GTP X met-tRNAf) complex formation. J Biol Chem. 1983 Mar 25;258(6):3438–3441. [PubMed] [Google Scholar]
  18. Mizzen L. A., Welch W. J. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol. 1988 Apr;106(4):1105–1116. doi: 10.1083/jcb.106.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nguyen V. T., Morange M., Bensaude O. Protein denaturation during heat shock and related stress. Escherichia coli beta-galactosidase and Photinus pyralis luciferase inactivation in mouse cells. J Biol Chem. 1989 Jun 25;264(18):10487–10492. [PubMed] [Google Scholar]
  20. Oldfield S., Proud C. G. Purification, phosphorylation and control of the guanine-nucleotide-exchange factor from rabbit reticulocyte lysates. Eur J Biochem. 1992 Aug 15;208(1):73–81. doi: 10.1111/j.1432-1033.1992.tb17160.x. [DOI] [PubMed] [Google Scholar]
  21. Pain V. M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem. 1996 Mar 15;236(3):747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  22. Price N., Proud C. The guanine nucleotide-exchange factor, eIF-2B. Biochimie. 1994;76(8):748–760. doi: 10.1016/0300-9084(94)90079-5. [DOI] [PubMed] [Google Scholar]
  23. Rhoads R. E., Lamphear B. J. Cap-independent translation of heat shock messenger RNAs. Curr Top Microbiol Immunol. 1995;203:131–153. doi: 10.1007/978-3-642-79663-0_7. [DOI] [PubMed] [Google Scholar]
  24. Schamhart D. H., van Walraven H. S., Wiegant F. A., Linnemans W. A., van Rijn J., van den Berg J., van Wijk R. Thermotolerance in cultured hepatoma cells: cell viability, cell morphology, protein synthesis, and heat-shock proteins. Radiat Res. 1984 Apr;98(1):82–95. [PubMed] [Google Scholar]
  25. Scheper G. C., Mulder J., Kleijn M., Voorma H. O., Thomas A. A., van Wijk R. Inactivation of eIF2B and phosphorylation of PHAS-I in heat-shocked rat hepatoma cells. J Biol Chem. 1997 Oct 24;272(43):26850–26856. doi: 10.1074/jbc.272.43.26850. [DOI] [PubMed] [Google Scholar]
  26. Stege G. J., Li G. C., Li L., Kampinga H. H., Konings A. W. On the role of hsp72 in heat-induced intranuclear protein aggregation. Int J Hyperthermia. 1994 Sep-Oct;10(5):659–674. doi: 10.3109/02656739409022446. [DOI] [PubMed] [Google Scholar]
  27. Welch W. J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992 Oct;72(4):1063–1081. doi: 10.1152/physrev.1992.72.4.1063. [DOI] [PubMed] [Google Scholar]
  28. Welsh G. I., Miyamoto S., Price N. T., Safer B., Proud C. G. T-cell activation leads to rapid stimulation of translation initiation factor eIF2B and inactivation of glycogen synthase kinase-3. J Biol Chem. 1996 May 10;271(19):11410–11413. doi: 10.1074/jbc.271.19.11410. [DOI] [PubMed] [Google Scholar]
  29. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995;11:441–469. doi: 10.1146/annurev.cb.11.110195.002301. [DOI] [PubMed] [Google Scholar]
  30. Xu Z., Pal J. K., Thulasiraman V., Hahn H. P., Chen J. J., Matts R. L. The role of the 90-kDa heat-shock protein and its associated cohorts in stabilizing the heme-regulated eIF-2alpha kinase in reticulocyte lysates during heat stress. Eur J Biochem. 1997 Jun 1;246(2):461–470. doi: 10.1111/j.1432-1033.1997.t01-1-00461.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES