Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 15;334(Pt 3):539–545. doi: 10.1042/bj3340539

Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.

N Kellershohn 1, M Laurent 1
PMCID: PMC1219720  PMID: 9729459

Abstract

Prion diseases are thought to result from the conformational change of the normal cellular prion protein to a pathogenic protease-resistant isoform. However, brain extracts not containing the protease-resistant isoform of the prion protein can be infectious following interspecies transmission. The 'protein-only' hypothesis of pathogenesis is extended to provide possible explanations which could be interpreted in terms of a different infectious agent. It is proposed that normal cellular protein (PrPC) may be transformed into a form (PrP*) that is conformationally distinct from the host-specific abnormal isoform (PrPSc). In infection from a heterologous donor, the dimeric forms of heterologous PrPSc, which may catalyse the formation of host PrP* from PrPC, host PrP* and host PrPSc are all considered to be capable of catalysing, to some extent, the conversion of PrPC into PrPSc. However, depending on the species involved, PrP* may, or may not, be pathogenic, and may, or may not, be sensitive to proteolysis. It is shown, by numerical integration of the differential rate equations derived from this model, that a strain may be stabilized after two or three passages through a different species and that transmission might occur in the absence of detectable protease-resistant prion protein. The natural transmission of scrapie to cattle is discussed in relation to the model.

Full Text

The Full Text of this article is available as a PDF (333.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguzzi A., Weissmann C. Prion research: the next frontiers. Nature. 1997 Oct 23;389(6653):795–798. doi: 10.1038/39758. [DOI] [PubMed] [Google Scholar]
  2. Basler K., Oesch B., Scott M., Westaway D., Wälchli M., Groth D. F., McKinley M. P., Prusiner S. B., Weissmann C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 1986 Aug 1;46(3):417–428. doi: 10.1016/0092-8674(86)90662-8. [DOI] [PubMed] [Google Scholar]
  3. Bessen R. A., Kocisko D. A., Raymond G. J., Nandan S., Lansbury P. T., Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995 Jun 22;375(6533):698–700. doi: 10.1038/375698a0. [DOI] [PubMed] [Google Scholar]
  4. Bossers A., Belt PBGM, Raymond G. J., Caughey B., de Vries R., Smits M. A. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4931–4936. doi: 10.1073/pnas.94.10.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., Marino S., Weissmann C., Aguzzi A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996 Jan 25;379(6563):339–343. doi: 10.1038/379339a0. [DOI] [PubMed] [Google Scholar]
  6. Bruce M. E., Fraser H. Scrapie strain variation and its implications. Curr Top Microbiol Immunol. 1991;172:125–138. doi: 10.1007/978-3-642-76540-7_8. [DOI] [PubMed] [Google Scholar]
  7. Bruce M., Chree A., McConnell I., Foster J., Pearson G., Fraser H. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond B Biol Sci. 1994 Mar 29;343(1306):405–411. doi: 10.1098/rstb.1994.0036. [DOI] [PubMed] [Google Scholar]
  8. Büeler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., Weissmann C. Mice devoid of PrP are resistant to scrapie. Cell. 1993 Jul 2;73(7):1339–1347. doi: 10.1016/0092-8674(93)90360-3. [DOI] [PubMed] [Google Scholar]
  9. Eigen M. Prionics or the kinetic basis of prion diseases. Biophys Chem. 1996 Dec 10;63(1):A1–18. doi: 10.1016/s0301-4622(96)02250-8. [DOI] [PubMed] [Google Scholar]
  10. Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., Tagliavini F. Neurotoxicity of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543–546. doi: 10.1038/362543a0. [DOI] [PubMed] [Google Scholar]
  11. Gabizon R., McKinley M. P., Prusiner S. B. Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4017–4021. doi: 10.1073/pnas.84.12.4017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horwich A. L., Weissman J. S. Deadly conformations--protein misfolding in prion disease. Cell. 1997 May 16;89(4):499–510. doi: 10.1016/s0092-8674(00)80232-9. [DOI] [PubMed] [Google Scholar]
  13. Isenmann S., Brandner S., Aguzzi A. Neuroectodermal grafting: a new tool for the study of neurodegenerative diseases. Histol Histopathol. 1996 Oct;11(4):1063–1073. [PubMed] [Google Scholar]
  14. Kacser H., Small J. R. How many phenotypes from one genotype? The case of Prion diseases. J Theor Biol. 1996 Oct 7;182(3):209–218. doi: 10.1006/jtbi.1996.0157. [DOI] [PubMed] [Google Scholar]
  15. Kaneko K., Peretz D., Pan K. M., Blochberger T. C., Wille H., Gabizon R., Griffith O. H., Cohen F. E., Baldwin M. A., Prusiner S. B. Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11160–11164. doi: 10.1073/pnas.92.24.11160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaneko K., Zulianello L., Scott M., Cooper C. M., Wallace A. C., James T. L., Cohen F. E., Prusiner S. B. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10069–10074. doi: 10.1073/pnas.94.19.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimberlin R. H. An overview of bovine spongiform encephalopathy. Dev Biol Stand. 1991;75:75–82. [PubMed] [Google Scholar]
  18. Kocisko D. A., Priola S. A., Raymond G. J., Chesebro B., Lansbury P. T., Jr, Caughey B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3923–3927. doi: 10.1073/pnas.92.9.3923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lasmézas C. I., Deslys J. P., Robain O., Jaegly A., Beringue V., Peyrin J. M., Fournier J. G., Hauw J. J., Rossier J., Dormont D. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science. 1997 Jan 17;275(5298):402–405. doi: 10.1126/science.275.5298.402. [DOI] [PubMed] [Google Scholar]
  20. Laurent M. Autocatalytic processes in cooperative mechanisms of prion diseases. FEBS Lett. 1997 Apr 21;407(1):1–6. doi: 10.1016/s0014-5793(97)00310-4. [DOI] [PubMed] [Google Scholar]
  21. Laurent M. Bistability and the species barrier in prion diseases: stepping across the threshold or not. Biophys Chem. 1998 May 5;72(1-2):211–222. doi: 10.1016/s0301-4622(98)00135-5. [DOI] [PubMed] [Google Scholar]
  22. Laurent M., Johannin G. Molecular clues to pathogenesis in prion diseases. Histol Histopathol. 1997 Apr;12(2):583–594. [PubMed] [Google Scholar]
  23. Laurent M. Prion diseases and the 'protein only' hypothesis: a theoretical dynamic study. Biochem J. 1996 Aug 15;318(Pt 1):35–39. doi: 10.1042/bj3180035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liautard J. P. Are prions misfolded molecular chaperones? FEBS Lett. 1991 Dec 9;294(3):155–157. doi: 10.1016/0014-5793(91)80657-o. [DOI] [PubMed] [Google Scholar]
  25. Müller W. E., Ushijima H., Schröder H. C., Forrest J. M., Schatton W. F., Rytik P. G., Heffner-Lauc M. Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol. 1993 Aug 15;246(3):261–267. doi: 10.1016/0922-4106(93)90040-g. [DOI] [PubMed] [Google Scholar]
  26. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  27. Sakaguchi S., Katamine S., Shigematsu K., Nakatani A., Moriuchi R., Nishida N., Kurokawa K., Nakaoke R., Sato H., Jishage K. Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent. J Virol. 1995 Dec;69(12):7586–7592. doi: 10.1128/jvi.69.12.7586-7592.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Telling G. C., Parchi P., DeArmond S. J., Cortelli P., Montagna P., Gabizon R., Mastrianni J., Lugaresi E., Gambetti P., Prusiner S. B. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science. 1996 Dec 20;274(5295):2079–2082. doi: 10.1126/science.274.5295.2079. [DOI] [PubMed] [Google Scholar]
  29. Telling G. C., Scott M., Mastrianni J., Gabizon R., Torchia M., Cohen F. E., DeArmond S. J., Prusiner S. B. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell. 1995 Oct 6;83(1):79–90. doi: 10.1016/0092-8674(95)90236-8. [DOI] [PubMed] [Google Scholar]
  30. Weissmann C. Molecular biology of prion diseases. Trends Cell Biol. 1994 Jan;4(1):10–14. doi: 10.1016/0962-8924(94)90032-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES