Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 15;334(Pt 3):633–640. doi: 10.1042/bj3340633

Thyroid hormone regulation of the Na+/glucose cotransporter SGLT1 in Caco-2 cells.

M Matosin-Matekalo 1, J E Mesonero 1, O Delezay 1, J C Poiree 1, A A Ilundain 1, E Brot-Laroche 1
PMCID: PMC1219733  PMID: 9729472

Abstract

The expression of the Na+/glucose cotransporter (SGLT1) in response to thyroid hormone [3,5,3'-tri-iodo-l-thyronine (T3)] was investigated in the enterocytic model cell line Caco-2/TC7. In differentiated cells, T3 treatment induces an average 10-fold increase in glucose consumption as well as a T3 dose-dependent increase in SGLT1 mRNA abundance. Only cells grown on glucose-containing media, but not on the non-metabolizable glucose analogue alpha-methylglucose (AMG), could respond to T3-treatment. The Vmax parameter of AMG transport was enhanced 6-fold by T3 treatment, whereas the protein abundance of SGLT1 was unchanged. The role of Na+ recycling in the T3-related activation of SGLT1 activity was suggested by both the large increase in Na+/K+ATPase protein abundance and the inhibition, down to control levels, of AMG uptake in ouabain-treated cells. Further investigations aimed at identifying the presence of a second cotransporter that could be expressed erroneously in the colon cancer cell line were unsuccessful: T3-treatment did not modify the sugar-specificity profile of AMG transport and did not induce the expression of SGLT2 as assessed by reverse transcription-PCR. Our results show that T3 can stimulate the SGLT1 cotransport activity in Caco-2 cells. Both transcriptional and translational levels of regulation are involved. Finally, glucose metabolism is required for SGLT1 expression, a result that contrasts with the in vivo situation and may be related to the fetal phenotype of the cells.

Full Text

The Full Text of this article is available as a PDF (460.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissonnette P., Gagné H., Coady M. J., Benabdallah K., Lapointe J. Y., Berteloot A. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells. Am J Physiol. 1996 May;270(5 Pt 1):G833–G843. doi: 10.1152/ajpgi.1996.270.5.G833. [DOI] [PubMed] [Google Scholar]
  2. Blais A., Bissonnette P., Berteloot A. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol. 1987;99(2):113–125. doi: 10.1007/BF01871231. [DOI] [PubMed] [Google Scholar]
  3. Blais A. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose. Am J Physiol. 1991 Jun;260(6 Pt 1):C1245–C1252. doi: 10.1152/ajpcell.1991.260.6.C1245. [DOI] [PubMed] [Google Scholar]
  4. Brot-Laroche E., Supplisson S., Delhomme B., Alcalde A. I., Alvarado F. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside. Biochim Biophys Acta. 1987 Nov 2;904(1):71–80. doi: 10.1016/0005-2736(87)90088-5. [DOI] [PubMed] [Google Scholar]
  5. Burant C. F., Flink S., DePaoli A. M., Chen J., Lee W. S., Hediger M. A., Buse J. B., Chang E. B. Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. J Clin Invest. 1994 Feb;93(2):578–585. doi: 10.1172/JCI117010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrière V., Barbat A., Rousset M., Brot-Laroche E., Dussaulx E., Cambier D., De Waziers I. D., Beaune P., Zweibaum A. Regulation of sucrase-isomaltase and hexose transporters in Caco-2 cells: a role for cytochrome P-4501A1? Am J Physiol. 1996 Jun;270(6 Pt 1):G976–G986. doi: 10.1152/ajpgi.1996.270.6.G976. [DOI] [PubMed] [Google Scholar]
  7. Chantret I., Rodolosse A., Barbat A., Dussaulx E., Brot-Laroche E., Zweibaum A., Rousset M. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci. 1994 Jan;107(Pt 1):213–225. doi: 10.1242/jcs.107.1.213. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Delezay O., Verrier B., Mabrouk K., van Rietschoten J., Fantini J., Mauchamp J., Gerard C. Characterization of an electrogenic sodium/glucose cotransporter in a human colon epithelial cell line. J Cell Physiol. 1995 Apr;163(1):120–128. doi: 10.1002/jcp.1041630114. [DOI] [PubMed] [Google Scholar]
  10. Delézay O., Baghdiguian S., Fantini J. The development of Na(+)-dependent glucose transport during differentiation of an intestinal epithelial cell clone is regulated by protein kinase C. J Biol Chem. 1995 May 26;270(21):12536–12541. doi: 10.1074/jbc.270.21.12536. [DOI] [PubMed] [Google Scholar]
  11. Devarajan P., Gilmore-Hebert M., Benz E. J., Jr Differential translation of the Na,K-ATPase subunit mRNAs. J Biol Chem. 1992 Nov 5;267(31):22435–22439. [PubMed] [Google Scholar]
  12. Feng J., Orlowski J., Lingrel J. B. Identification of a functional thyroid hormone response element in the upstream flanking region of the human Na,K-ATPase beta 1 gene. Nucleic Acids Res. 1993 Jun 11;21(11):2619–2626. doi: 10.1093/nar/21.11.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferraris R. P., Diamond J. M. Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5868–5872. doi: 10.1073/pnas.90.12.5868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferraris R. P., Diamond J. Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1069–G1073. doi: 10.1152/ajpgi.1992.262.6.G1069. [DOI] [PubMed] [Google Scholar]
  15. Ferraris R. P., Villenas S. A., Hirayama B. A., Diamond J. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis. Am J Physiol. 1992 Jun;262(6 Pt 1):G1060–G1068. doi: 10.1152/ajpgi.1992.262.6.G1060. [DOI] [PubMed] [Google Scholar]
  16. Freeman T. C., Wood I. S., Sirinathsinghji D. J., Beechey R. B., Dyer J., Shirazi-Beechey S. P. The expression of the Na+/glucose cotransporter (SGLT1) gene in lamb small intestine during postnatal development. Biochim Biophys Acta. 1993 Mar 14;1146(2):203–212. doi: 10.1016/0005-2736(93)90357-6. [DOI] [PubMed] [Google Scholar]
  17. Giannella R. A., Orlowski J., Jump M. L., Lingrel J. B. Na(+)-K(+)-ATPase gene expression in rat intestine and Caco-2 cells: response to thyroid hormone. Am J Physiol. 1993 Oct;265(4 Pt 1):G775–G782. doi: 10.1152/ajpgi.1993.265.4.G775. [DOI] [PubMed] [Google Scholar]
  18. Giralt M., Park E. A., Gurney A. L., Liu J. S., Hakimi P., Hanson R. W. Identification of a thyroid hormone response element in the phosphoenolpyruvate carboxykinase (GTP) gene. Evidence for synergistic interaction between thyroid hormone and cAMP cis-regulatory elements. J Biol Chem. 1991 Nov 15;266(32):21991–21996. [PubMed] [Google Scholar]
  19. Giudicelli J., Bertrand M. F., Bilski S., Tran T. T., Poiree J. C. Effect of cross-linkers on the structure and function of pig-renal sodium-glucose cotransporters after papain treatment. Biochem J. 1998 Mar 1;330(Pt 2):733–736. doi: 10.1042/bj3300733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gottardi C. J., Caplan M. J. An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol. 1993 Apr;121(2):283–293. doi: 10.1083/jcb.121.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gérardi-Laffin C., Vittori C., Sudaka P., Poirée J. C. Immunological recognition of sodium/D-glucose cotransporter from renal brush border membranes by polyclonal antibodies. Biochim Biophys Acta. 1991 Mar 18;1063(1):21–26. doi: 10.1016/0005-2736(91)90348-c. [DOI] [PubMed] [Google Scholar]
  22. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  23. Hediger M. A., Rhoads D. B. Molecular physiology of sodium-glucose cotransporters. Physiol Rev. 1994 Oct;74(4):993–1026. doi: 10.1152/physrev.1994.74.4.993. [DOI] [PubMed] [Google Scholar]
  24. Hemlin M., Huang X. Na+/glucose cotransport in the colonic adenocarcinoma cell line HT29 cl.19A: effect of cAMP. Acta Physiol Scand. 1997 Jun;160(2):185–194. [PubMed] [Google Scholar]
  25. Höppner W., Seitz H. J. Effect of thyroid hormones on glucokinase gene transcription in rat liver. J Biol Chem. 1989 Dec 5;264(34):20643–20647. [PubMed] [Google Scholar]
  26. Jumarie C., Malo C. Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J Cell Physiol. 1991 Oct;149(1):24–33. doi: 10.1002/jcp.1041490105. [DOI] [PubMed] [Google Scholar]
  27. Lescale-Matys L., Dyer J., Scott D., Freeman T. C., Wright E. M., Shirazi-Beechey S. P. Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J. 1993 Apr 15;291(Pt 2):435–440. doi: 10.1042/bj2910435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mackenzie B., Loo D. D., Panayotova-Heiermann M., Wright E. M. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J Biol Chem. 1996 Dec 20;271(51):32678–32683. doi: 10.1074/jbc.271.51.32678. [DOI] [PubMed] [Google Scholar]
  29. Mahraoui L., Rodolosse A., Barbat A., Dussaulx E., Zweibaum A., Rousset M., Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. 1994 Mar 15;298(Pt 3):629–633. doi: 10.1042/bj2980629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mahraoui L., Rousset M., Dussaulx E., Darmoul D., Zweibaum A., Brot-Laroche E. Expression and localization of GLUT-5 in Caco-2 cells, human small intestine, and colon. Am J Physiol. 1992 Sep;263(3 Pt 1):G312–G318. doi: 10.1152/ajpgi.1992.263.3.G312. [DOI] [PubMed] [Google Scholar]
  31. Mesonero J., Matosin M., Cambier D., Rodriguez-Yoldi M. J., Brot-Laroche E. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem J. 1995 Dec 15;312(Pt 3):757–762. doi: 10.1042/bj3120757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Müller M. J., Acheson K. J., Jequier E., Burger A. G. Effect of thyroid hormones on oxidative and nonoxidative glucose metabolism in humans. Am J Physiol. 1988 Aug;255(2 Pt 1):E146–E152. doi: 10.1152/ajpendo.1988.255.2.E146. [DOI] [PubMed] [Google Scholar]
  33. Nebioglu S., Wathanaronchai P., Nebioglu D., Pruden E. L., Gibson D. M. Mechanisms underlying enhanced glycogenolysis in livers of 3,5,3'-triiodothyronine-treated rats. Am J Physiol. 1990 Jan;258(1 Pt 1):E109–E116. doi: 10.1152/ajpendo.1990.258.1.E109. [DOI] [PubMed] [Google Scholar]
  34. Peng H., Lever J. E. Post-transcriptional regulation of Na+/glucose cotransporter (SGTL1) gene expression in LLC-PK1 cells. Increased message stability after cyclic AMP elevation or differentiation inducer treatment. J Biol Chem. 1995 Sep 1;270(35):20536–20542. doi: 10.1074/jbc.270.35.20536. [DOI] [PubMed] [Google Scholar]
  35. Poppe R., Karbach U., Gambaryan S., Wiesinger H., Lutzenburg M., Kraemer M., Witte O. W., Koepsell H. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem. 1997 Jul;69(1):84–94. doi: 10.1046/j.1471-4159.1997.69010084.x. [DOI] [PubMed] [Google Scholar]
  36. Pringault E., Arpin M., Garcia A., Finidori J., Louvard D. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 1986 Dec 1;5(12):3119–3124. doi: 10.1002/j.1460-2075.1986.tb04618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ramond M. J., Martinot-Peignoux M., Erlinger S. Dome formation in the human colon carcinoma cell line Caco-2 in culture. Influence of ouabain and permeable supports. Biol Cell. 1985;54(1):89–92. doi: 10.1111/j.1768-322x.1985.tb00383.x. [DOI] [PubMed] [Google Scholar]
  38. Rousset M., Robine-Leon S., Dussaulx E., Chevalier G., Zweibaum A. Glycogen storage in foetal and malignant epithelial cells of the human colon. Front Gastrointest Res. 1979;4:80–85. doi: 10.1159/000402288. [DOI] [PubMed] [Google Scholar]
  39. Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
  40. Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
  41. Shirazi-Beechey S. P., Hirayama B. A., Wang Y., Scott D., Smith M. W., Wright E. M. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol. 1991 Jun;437:699–708. doi: 10.1113/jphysiol.1991.sp018620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smith M. W. Genetic regulation of enterocyte differentiation. Proc Nutr Soc. 1993 Aug;52(2):293–300. doi: 10.1079/pns19930065. [DOI] [PubMed] [Google Scholar]
  43. Tarpey P. S., Wood I. S., Shirazi-Beechey S. P., Beechey R. B. Amino acid sequence and the cellular location of the Na(+)-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell. Biochem J. 1995 Nov 15;312(Pt 1):293–300. doi: 10.1042/bj3120293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ulisse S., Jannini E. A., Pepe M., De Matteis S., D'Armiento M. Thyroid hormone stimulates glucose transport and GLUT1 mRNA in rat Sertoli cells. Mol Cell Endocrinol. 1992 Sep;87(1-3):131–137. doi: 10.1016/0303-7207(92)90241-w. [DOI] [PubMed] [Google Scholar]
  46. Weinstein S. P., O'Boyle E., Fisher M., Haber R. S. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994 Aug;135(2):649–654. doi: 10.1210/endo.135.2.8033812. [DOI] [PubMed] [Google Scholar]
  47. Wright E. M. The intestinal Na+/glucose cotransporter. Annu Rev Physiol. 1993;55:575–589. doi: 10.1146/annurev.ph.55.030193.003043. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES