Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 15;334(Pt 3):659–667. doi: 10.1042/bj3340659

Leishmania major parasites express cyclophilin isoforms with an unusual interaction with calcineurin.

C Rascher 1, A Pahl 1, A Pecht 1, K Brune 1, W Solbach 1, H Bang 1
PMCID: PMC1219736  PMID: 9729475

Abstract

The immunosuppressive effects of the fungal metabolite cyclosporin A (CsA) are mediated primarily by binding to cyclophilins (Cyps). The resulting CsA-Cyp complex inhibits the Ca2+-regulated protein phosphatase calcineurin and down-regulates signal transduction events. Previously we reported that CsA is a potent inhibitor of infections transmitted by the human pathogenic protozoan parasite Leishmania major in vitro and in vivo, but does not effect the extracellular growth of L. major itself. It is unknown how L. major exerts this resistance to CsA. Here we report that a major Cyp, besides additional isoforms with the same N-terminal amino acid sequence, was expressed in L. major. The cloned and sequenced gene encodes a putative 174-residue protein called L. major Cyp 19 (LmCyp19). The recombinant LmCyp19 exhibits peptidyl-prolyl cis/trans isomerase activity with a substrate specificity and an inhibition by CsA that are characteristic of other eukaryotic Cyps. To determine whether calcineurin is involved in the discrimination of the effects of CsA we also examined the presence of a parasitic calcineurin and tested the interaction with Cyps. Despite the expression of functionally active calcineurin by L. major, neither LmCyp19 nor other L. major Cyps bound to its own or mammalian calcineurin. The amino acid sequence of most Cyps includes an essential arginine residue around the calcineurin-docking side. In LmCyp19 this is replaced by an asparagine residue. This exchange and additional charged residues are apparently responsible for the lack of LmCyp19 interaction with calcineurin. These observations indicate that resistance of L. major to CsA in vitro is mediated by the lack of complex formation with calcineurin despite CsA binding by parasitic Cyp.

Full Text

The Full Text of this article is available as a PDF (588.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barford D. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci. 1996 Nov;21(11):407–412. doi: 10.1016/s0968-0004(96)10060-8. [DOI] [PubMed] [Google Scholar]
  2. Barthelmess I. B., Tropschug M. FK506-binding protein of Neurospora crassa (NcFKBP) mediates sensitivity to the immunosuppressant FK506; resistant mutants identify two loci. Curr Genet. 1993 Jan;23(1):54–58. doi: 10.1007/BF00336750. [DOI] [PubMed] [Google Scholar]
  3. Bell A., Wernli B., Franklin R. M. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. Biochem Pharmacol. 1994 Aug 3;48(3):495–503. doi: 10.1016/0006-2952(94)90279-8. [DOI] [PubMed] [Google Scholar]
  4. Bergsma D. J., Eder C., Gross M., Kersten H., Sylvester D., Appelbaum E., Cusimano D., Livi G. P., McLaughlin M. M., Kasyan K. The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem. 1991 Dec 5;266(34):23204–23214. [PubMed] [Google Scholar]
  5. Beverley S. M. Hijacking the cell: parasites in the driver's seat. Cell. 1996 Nov 29;87(5):787–789. doi: 10.1016/s0092-8674(00)81984-4. [DOI] [PubMed] [Google Scholar]
  6. Bogdan C., Streck H., Röllinghoff M., Solbach W. Cyclosporin A enhances elimination of intracellular L. major parasites by murine macrophages. Clin Exp Immunol. 1989 Jan;75(1):141–146. [PMC free article] [PubMed] [Google Scholar]
  7. Braun W., Kallen J., Mikol V., Walkinshaw M. D., Wüthrich K. Three-dimensional structure and actions of immunosuppressants and their immunophilins. FASEB J. 1995 Jan;9(1):63–72. doi: 10.1096/fasebj.9.1.7529736. [DOI] [PubMed] [Google Scholar]
  8. Breuder T., Hemenway C. S., Movva N. R., Cardenas M. E., Heitman J. Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5372–5376. doi: 10.1073/pnas.91.12.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Compton L. A., Davis J. M., Macdonald J. R., Bächinger H. P. Structural and functional characterization of Escherichia coli peptidyl-prolyl cis-trans isomerases. Eur J Biochem. 1992 Jun 15;206(3):927–934. doi: 10.1111/j.1432-1033.1992.tb17002.x. [DOI] [PubMed] [Google Scholar]
  10. Fischer G., Bang H., Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [PubMed] [Google Scholar]
  11. Foor F., Parent S. A., Morin N., Dahl A. M., Ramadan N., Chrebet G., Bostian K. A., Nielsen J. B. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature. 1992 Dec 17;360(6405):682–684. doi: 10.1038/360682a0. [DOI] [PubMed] [Google Scholar]
  12. Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993 Sep 15;216(3):689–707. doi: 10.1111/j.1432-1033.1993.tb18189.x. [DOI] [PubMed] [Google Scholar]
  13. Guerini D. Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun. 1997 Jun 18;235(2):271–275. doi: 10.1006/bbrc.1997.6802. [DOI] [PubMed] [Google Scholar]
  14. Harrison R. K., Stein R. L. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry. 1990 Apr 24;29(16):3813–3816. doi: 10.1021/bi00468a001. [DOI] [PubMed] [Google Scholar]
  15. High K. P., Handschumacher R. E. Immunity, microbial pathogenesis, and immunophilins: finding the keys, now where are the locks? Infect Agents Dis. 1992 Jun;1(3):121–135. [PubMed] [Google Scholar]
  16. High K. P., Joiner K. A., Handschumacher R. E. Isolation, cDNA sequences, and biochemical characterization of the major cyclosporin-binding proteins of Toxoplasma gondii. J Biol Chem. 1994 Mar 25;269(12):9105–9112. [PubMed] [Google Scholar]
  17. High K. P. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation. 1994 Jun 27;57(12):1689–1700. [PubMed] [Google Scholar]
  18. Hoerauf A., Rascher C., Bang R., Pahl A., Solbach W., Brune K., Röllinghoff M., Bang H. Host-cell cyclophilin is important for the intracellular replication of Leishmania major. Mol Microbiol. 1997 Apr;24(2):421–429. doi: 10.1046/j.1365-2958.1997.3401716.x. [DOI] [PubMed] [Google Scholar]
  19. Hunter T. Prolyl isomerases and nuclear function. Cell. 1998 Jan 23;92(2):141–143. doi: 10.1016/s0092-8674(00)80906-x. [DOI] [PubMed] [Google Scholar]
  20. James S. L., Nacy C. Effector functions of activated macrophages against parasites. Curr Opin Immunol. 1993 Aug;5(4):518–523. doi: 10.1016/0952-7915(93)90032-n. [DOI] [PubMed] [Google Scholar]
  21. Kallen J., Spitzfaden C., Zurini M. G., Wider G., Widmer H., Wüthrich K., Walkinshaw M. D. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature. 1991 Sep 19;353(6341):276–279. doi: 10.1038/353276a0. [DOI] [PubMed] [Google Scholar]
  22. Krummrei U., Bang R., Schmidtchen R., Brune K., Bang H. Cyclophilin-A is a zinc-dependent DNA binding protein in macrophages. FEBS Lett. 1995 Aug 28;371(1):47–51. doi: 10.1016/0014-5793(95)00815-q. [DOI] [PubMed] [Google Scholar]
  23. Murray P. J., Young R. A. Stress and immunological recognition in host-pathogen interactions. J Bacteriol. 1992 Jul;174(13):4193–4196. doi: 10.1128/jb.174.13.4193-4196.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Odom A., Muir S., Lim E., Toffaletti D. L., Perfect J., Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 1997 May 15;16(10):2576–2589. doi: 10.1093/emboj/16.10.2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Page A. P., Landry D., Wilson G. G., Carlow C. K. Molecular characterization of a cyclosporin A-insensitive cyclophilin from the parasitic nematode Brugia malayi. Biochemistry. 1995 Sep 12;34(36):11545–11550. doi: 10.1021/bi00036a030. [DOI] [PubMed] [Google Scholar]
  26. Page A. P., MacNiven K., Hengartner M. O. Cloning and biochemical characterization of the cyclophilin homologues from the free-living nematode Caenorhabditis elegans. Biochem J. 1996 Jul 1;317(Pt 1):179–185. doi: 10.1042/bj3170179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pflügl G., Kallen J., Schirmer T., Jansonius J. N., Zurini M. G., Walkinshaw M. D. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature. 1993 Jan 7;361(6407):91–94. doi: 10.1038/361091a0. [DOI] [PubMed] [Google Scholar]
  28. Polla B. S. Heat shock proteins in host-parasite interactions. Immunol Today. 1991 Mar;12(3):A38–A41. doi: 10.1016/S0167-5699(05)80011-8. [DOI] [PubMed] [Google Scholar]
  29. Reddy G. R. Cloning and characterization of a Plasmodium falciparum cyclophilin gene that is stage-specifically expressed. Mol Biochem Parasitol. 1995 Jul;73(1-2):111–121. doi: 10.1016/0166-6851(95)00103-8. [DOI] [PubMed] [Google Scholar]
  30. Reiner N. E. Altered cell signaling and mononuclear phagocyte deactivation during intracellular infection. Immunol Today. 1994 Aug;15(8):374–381. doi: 10.1016/0167-5699(94)90176-7. [DOI] [PubMed] [Google Scholar]
  31. Roberts H. C., Sternberg J. M., Chappell L. H. Characterization of calcineurin from Hymenolepis microstoma and H. diminuta and its interaction with cyclosporin A. Parasitology. 1997 Mar;114(Pt 3):279–283. doi: 10.1017/s0031182096008190. [DOI] [PubMed] [Google Scholar]
  32. Schechter I., Berger A. Peptides of L-and D-alanine. Synthesis and optical rotations. Biochemistry. 1966 Oct;5(10):3362–3370. doi: 10.1021/bi00874a040. [DOI] [PubMed] [Google Scholar]
  33. Schmid F. X. Protein folding. Prolyl isomerases join the fold. Curr Biol. 1995 Sep 1;5(9):993–994. doi: 10.1016/s0960-9822(95)00197-7. [DOI] [PubMed] [Google Scholar]
  34. Schreiber S. L., Crabtree G. R. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992 Apr;13(4):136–142. doi: 10.1016/0167-5699(92)90111-J. [DOI] [PubMed] [Google Scholar]
  35. Solbach W., Forberg K., Kammerer E., Bogdan C., Röllinghoff M. Suppressive effect of cyclosporin A on the development of Leishmania tropica-induced lesions in genetically susceptible BALB/c mice. J Immunol. 1986 Jul 15;137(2):702–707. [PubMed] [Google Scholar]
  36. Solbach W., Forberg K., Röllinghoff M. Effect of T-lymphocyte suppression on the parasite burden in Leishmania major-infected, genetically susceptible BALB/c mice. Infect Immun. 1986 Dec;54(3):909–912. doi: 10.1128/iai.54.3.909-912.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Swan D. G., McDonald F., Shiels B. R. A stage regulated cyclophilin gene from Theileria annulata. Mol Biochem Parasitol. 1996 Oct 18;81(1):111–114. doi: 10.1016/0166-6851(96)02700-4. [DOI] [PubMed] [Google Scholar]
  38. Thériault Y., Logan T. M., Meadows R., Yu L., Olejniczak E. T., Holzman T. F., Simmer R. L., Fesik S. W. Solution structure of the cyclosporin A/cyclophilin complex by NMR. Nature. 1993 Jan 7;361(6407):88–91. doi: 10.1038/361088a0. [DOI] [PubMed] [Google Scholar]
  39. Tropschug M., Nicholson D. W., Hartl F. U., Köhler H., Pfanner N., Wachter E., Neupert W. Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa. One gene codes for both the cytosolic and mitochondrial forms. J Biol Chem. 1988 Oct 5;263(28):14433–14440. [PubMed] [Google Scholar]
  40. Wiederrecht G., Lam E., Hung S., Martin M., Sigal N. The mechanism of action of FK-506 and cyclosporin A. Ann N Y Acad Sci. 1993 Nov 30;696:9–19. doi: 10.1111/j.1749-6632.1993.tb17137.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES