Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Sep 15;334(Pt 3):723–729. doi: 10.1042/bj3340723

ATP-dependent transport of reduced glutathione in yeast secretory vesicles.

J F Rebbeor 1, G C Connolly 1, M E Dumont 1, N Ballatori 1
PMCID: PMC1219743  PMID: 9729482

Abstract

Turnover of cellular reduced glutathione (GSH) is accomplished predominantly by export into the extracellular space; however, the plasma membrane transport mechanisms that mediate GSH efflux are not well characterized. The present study examined GSH transport using secretory vesicles isolated from the sec6-4 mutant strain of Saccharomyces cerevisiae. In contrast with studies in mammalian membrane vesicles, GSH transport in yeast secretory vesicles was mediated largely by an ATP-dependent, low-affinity pathway (Km 19+/-5 mM). ATP-dependent [3H]GSH transport was cis-inhibited by substrates of the yeast YCF1 transporter, including sulphobromophthalein, glutathione S-conjugates and the alkaloid verapamil, and was competitively inhibited by S-(2, 4-dinitrophenyl)glutathione (DNP-SG). Similarly, GSH competitively inhibited ATP-dependent [3H]DNP-SG transport, with a Ki of 18+/-2 mM, but had no effect on ATP-dependent [3H]taurocholate transport. ATP-dependent GSH transport was not affected by either membrane potential or pH-gradient uncouplers, but was inhibited by 4, 4'-di-isothiocyanatostilbene-2,2'-disulphonate, probenecid and sulphinpyrazone, which are inhibitors of mrp1 and mrp2, mammalian homologues of the yeast YCF1 transporter. Western blot analysis of the secretory vesicle membrane fraction confirmed the presence of Ycf1p. These results provide the first direct evidence for low-affinity, ATP-dependent transport of GSH, and demonstrate that this ATP-dependent pathway displays kinetic characteristics similar to those of the yeast YCF1 transporter.

Full Text

The Full Text of this article is available as a PDF (540.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballatori N., Dutczak W. J. Identification and characterization of high and low affinity transport systems for reduced glutathione in liver cell canalicular membranes. J Biol Chem. 1994 Aug 5;269(31):19731–19737. [PubMed] [Google Scholar]
  2. Ballatori N., Moseley R. H., Boyer J. L. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles. J Biol Chem. 1986 May 15;261(14):6216–6221. [PubMed] [Google Scholar]
  3. Ballatori N., Truong A. T. Multiple canalicular transport mechanisms for glutathione S-conjugates. Transport on both ATP- and voltage-dependent carriers. J Biol Chem. 1995 Feb 24;270(8):3594–3601. doi: 10.1074/jbc.270.8.3594. [DOI] [PubMed] [Google Scholar]
  4. Ballatori N., Wang W., Li L., Truong A. T. An endogenous ATP-sensitive glutathione S-conjugate efflux mechanism in Xenopus laevis oocytes. Am J Physiol. 1996 May;270(5 Pt 2):R1156–R1162. doi: 10.1152/ajpregu.1996.270.5.R1156. [DOI] [PubMed] [Google Scholar]
  5. Büchler M., König J., Brom M., Kartenbeck J., Spring H., Horie T., Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996 Jun 21;271(25):15091–15098. doi: 10.1074/jbc.271.25.15091. [DOI] [PubMed] [Google Scholar]
  6. Dutczak W. J., Ballatori N. Transport of the glutathione-methylmercury complex across liver canalicular membranes on reduced glutathione carriers. J Biol Chem. 1994 Apr 1;269(13):9746–9751. [PubMed] [Google Scholar]
  7. Evers R., Zaman G. J., van Deemter L., Jansen H., Calafat J., Oomen L. C., Oude Elferink R. P., Borst P., Schinkel A. H. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest. 1996 Mar 1;97(5):1211–1218. doi: 10.1172/JCI118535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feller N., Broxterman H. J., Währer D. C., Pinedo H. M. ATP-dependent efflux of calcein by the multidrug resistance protein (MRP): no inhibition by intracellular glutathione depletion. FEBS Lett. 1995 Jul 17;368(2):385–388. doi: 10.1016/0014-5793(95)00677-2. [DOI] [PubMed] [Google Scholar]
  9. García-Ruiz C., Fernández-Checa J. C., Kaplowitz N. Bidirectional mechanism of plasma membrane transport of reduced glutathione in intact rat hepatocytes and membrane vesicles. J Biol Chem. 1992 Nov 5;267(31):22256–22264. [PubMed] [Google Scholar]
  10. Gekeler V., Ise W., Sanders K. H., Ulrich W. R., Beck J. The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun. 1995 Mar 8;208(1):345–352. doi: 10.1006/bbrc.1995.1344. [DOI] [PubMed] [Google Scholar]
  11. Goldstein A., Lampen J. O. Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol. 1975;42:504–511. doi: 10.1016/0076-6879(75)42159-0. [DOI] [PubMed] [Google Scholar]
  12. Hinchman C. A., Matsumoto H., Simmons T. W., Ballatori N. Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. J Biol Chem. 1991 Nov 25;266(33):22179–22185. [PubMed] [Google Scholar]
  13. Lee T. K., Li L., Ballatori N. Hepatic glutathione and glutathione S-conjugate transport mechanisms. Yale J Biol Med. 1997 Jul-Aug;70(4):287–300. [PMC free article] [PubMed] [Google Scholar]
  14. Leier I., Jedlitschky G., Buchholz U., Center M., Cole S. P., Deeley R. G., Keppler D. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J. 1996 Mar 1;314(Pt 2):433–437. doi: 10.1042/bj3140433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li L., Lee T. K., Ballatori N. Functional re-evaluation of the putative glutathione transporters, RcGshT and RsGshT. Yale J Biol Med. 1997 Jul-Aug;70(4):301–310. [PMC free article] [PubMed] [Google Scholar]
  16. Li Z. S., Szczypka M., Lu Y. P., Thiele D. J., Rea P. A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem. 1996 Mar 15;271(11):6509–6517. doi: 10.1074/jbc.271.11.6509. [DOI] [PubMed] [Google Scholar]
  17. Loe D. W., Almquist K. C., Deeley R. G., Cole S. P. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. J Biol Chem. 1996 Apr 19;271(16):9675–9682. doi: 10.1074/jbc.271.16.9675. [DOI] [PubMed] [Google Scholar]
  18. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  19. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205–215. doi: 10.1016/0092-8674(80)90128-2. [DOI] [PubMed] [Google Scholar]
  20. Novick P., Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1858–1862. doi: 10.1073/pnas.76.4.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ortiz D. F., St Pierre M. V., Abdulmessih A., Arias I. M. A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport. J Biol Chem. 1997 Jun 13;272(24):15358–15365. doi: 10.1074/jbc.272.24.15358. [DOI] [PubMed] [Google Scholar]
  22. Paul S., Breuninger L. M., Tew K. D., Shen H., Kruh G. D. ATP-dependent uptake of natural product cytotoxic drugs by membrane vesicles establishes MRP as a broad specificity transporter. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6929–6934. doi: 10.1073/pnas.93.14.6929. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  23. Penninckx M. J., Elskens M. T. Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol. 1993;34:239–301. doi: 10.1016/s0065-2911(08)60031-4. [DOI] [PubMed] [Google Scholar]
  24. Penninckx M., Jaspers C., Wiame J. M. Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of gamma-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem. 1980 Feb;104(1):119–123. doi: 10.1111/j.1432-1033.1980.tb04407.x. [DOI] [PubMed] [Google Scholar]
  25. Rappa G., Lorico A., Flavell R. A., Sartorelli A. C. Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res. 1997 Dec 1;57(23):5232–5237. [PubMed] [Google Scholar]
  26. Ruetz S., Gros P. Functional expression of P-glycoproteins in secretory vesicles. J Biol Chem. 1994 Apr 22;269(16):12277–12284. [PubMed] [Google Scholar]
  27. Schneider E., Yamazaki H., Sinha B. K., Cowan K. H. Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. Br J Cancer. 1995 Apr;71(4):738–743. doi: 10.1038/bjc.1995.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. St-Pierre M. V., Ruetz S., Epstein L. F., Gros P., Arias I. M. ATP-dependent transport of organic anions in secretory vesicles of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9476–9479. doi: 10.1073/pnas.91.20.9476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Szczypka M. S., Wemmie J. A., Moye-Rowley W. S., Thiele D. J. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem. 1994 Sep 9;269(36):22853–22857. [PubMed] [Google Scholar]
  30. Taguchi Y., Yoshida A., Takada Y., Komano T., Ueda K. Anti-cancer drugs and glutathione stimulate vanadate-induced trapping of nucleotide in multidrug resistance-associated protein (MRP). FEBS Lett. 1997 Jan 13;401(1):11–14. doi: 10.1016/s0014-5793(96)01421-4. [DOI] [PubMed] [Google Scholar]
  31. Versantvoort C. H., Broxterman H. J., Bagrij T., Scheper R. J., Twentyman P. R. Regulation by glutathione of drug transport in multidrug-resistant human lung tumour cell lines overexpressing multidrug resistance-associated protein. Br J Cancer. 1995 Jul;72(1):82–89. doi: 10.1038/bjc.1995.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walworth N. C., Novick P. J. Purification and characterization of constitutive secretory vesicles from yeast. J Cell Biol. 1987 Jul;105(1):163–174. doi: 10.1083/jcb.105.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wemmie J. A., Moye-Rowley W. S. Mutational analysis of the Saccharomyces cerevisiae ATP-binding cassette transporter protein Ycf1p. Mol Microbiol. 1997 Aug;25(4):683–694. doi: 10.1046/j.1365-2958.1997.5061868.x. [DOI] [PubMed] [Google Scholar]
  34. Yi J. R., Lu S., Fernandez-Checa J., Kaplowitz N. Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics. J Clin Invest. 1994 Apr;93(4):1841–1845. doi: 10.1172/JCI117170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yi J. R., Lu S., Fernández-Checa J., Kaplowitz N. Expression cloning of the cDNA for a polypeptide associated with rat hepatic sinusoidal reduced glutathione transport: characteristics and comparison with the canalicular transporter. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1495–1499. doi: 10.1073/pnas.92.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zadziński R., Maszewski J., Bartosz G. Transport of glutathione S-conjugates in the yeasts Saccharomyces cerevisiae. Cell Biol Int. 1996 May;20(5):325–330. doi: 10.1006/cbir.1996.0035. [DOI] [PubMed] [Google Scholar]
  37. Zaman G. J., Lankelma J., van Tellingen O., Beijnen J., Dekker H., Paulusma C., Oude Elferink R. P., Baas F., Borst P. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7690–7694. doi: 10.1073/pnas.92.17.7690. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES