Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 1;335(Pt 1):27–33. doi: 10.1042/bj3350027

Sulphoxidation reaction catalysed by myeloperoxidase from human leucocytes.

C Capeillère-Blandin 1, C Martin 1, N Gaggero 1, P Pasta 1, G Carrea 1, S Colonna 1
PMCID: PMC1219748  PMID: 9742209

Abstract

The oxidation of alkyl aryl sulphides by myeloperoxidase (MPO) at the expense of hydrogen peroxide was investigated under steady-state conditions. The sulphide concentration effect was studied under saturating H2O2 concentrations at pH 5.0 and 20 degreesC. The kinetic constants, kcat and Km, of the different substrates were determined and the values were in the 1-10 s-1 range and around 43+/-26 microM respectively, whatever the sulphide considered. In the case of p-substituted thioanisoles, the oxidation rate was dependent upon the substituent effect. The correlation of log(kcat) with the substituent constants (sigma+ values) (Hammett equation) could be explained by a reaction mechanism involving the enzyme compound II and a sulphenium radical cation. This conclusion was also supported by spectrophotometric analysis of catalytic intermediates of the enzyme, showing the accumulation of compound II. Moreover, chiral HPLC analyses showed that MPO oxidation of alkyl aryl sulphides produced the corresponding (R)-sulphoxides with a low enantioselectivity (4-8%). Chloride ion effects on the MPO-catalysed oxygenation of sulphides were also studied. Chloride acted as a substrate for MPO and as an activator in MPO-catalysed sulphoxidation. Inhibition occurred at chloride concentrations above 120 mM, whereas below 120 mM, chloride increased the reaction rate when using p-tolyl methyl sulphide as the substrate. In the presence of 100 mM chloride the catalytic efficiency (kcat/Km) of MPO increased 3-4-fold, whatever the sulphide considered, but racemic products were obtained. These data have been interpreted in the light of known structural information on the accessibility of the distal haem cavity.

Full Text

The Full Text of this article is available as a PDF (609.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. C., Krinsky N. I. A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions, and protons. J Biol Chem. 1982 Nov 25;257(22):13240–13245. [PubMed] [Google Scholar]
  2. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  3. Bakkenist A. R., Wever R., Vulsma T., Plat H., van Gelder B. F. Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta. 1978 May 11;524(1):45–54. doi: 10.1016/0005-2744(78)90101-8. [DOI] [PubMed] [Google Scholar]
  4. Bakkenist A. R., de Boer J. E., Plat H., Wever R. The halide complexes of myeloperoxidase and the mechanism of the halogenation reactions. Biochim Biophys Acta. 1980 Jun 13;613(2):337–348. doi: 10.1016/0005-2744(80)90088-1. [DOI] [PubMed] [Google Scholar]
  5. Capeillere-Blandin C., Masson A., Descamps-Latscha B. Molecular characteristics of cytochrome b558 isolated from human granulocytes, monocytes and HL60 and U937 cells differentiated into monocyte/macrophages. Biochim Biophys Acta. 1991 Aug 13;1094(1):55–65. doi: 10.1016/0167-4889(91)90026-t. [DOI] [PubMed] [Google Scholar]
  6. Casella L., Gullotti M., Ghezzi R., Poli S., Beringhelli T., Colonna S., Carrea G. Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes. Biochemistry. 1992 Oct 6;31(39):9451–9459. doi: 10.1021/bi00154a018. [DOI] [PubMed] [Google Scholar]
  7. Cashman J. R. Structural and catalytic properties of the mammalian flavin-containing monooxygenase. Chem Res Toxicol. 1995 Mar;8(2):166–181. doi: 10.1021/tx00044a001. [DOI] [PubMed] [Google Scholar]
  8. Colonna S., Gaggero N., Manfredi A., Casella L., Gullotti M., Carrea G., Pasta P. Enantioselective oxidations of sulfides catalyzed by chloroperoxidase. Biochemistry. 1990 Nov 20;29(46):10465–10468. doi: 10.1021/bi00498a006. [DOI] [PubMed] [Google Scholar]
  9. Davey C. A., Fenna R. E. 2.3 A resolution X-ray crystal structure of the bisubstrate analogue inhibitor salicylhydroxamic acid bound to human myeloperoxidase: a model for a prereaction complex with hydrogen peroxide. Biochemistry. 1996 Aug 20;35(33):10967–10973. doi: 10.1021/bi960577m. [DOI] [PubMed] [Google Scholar]
  10. Doerge D. R., Cooray N. M., Brewster M. E. Peroxidase-catalyzed S-oxygenation: mechanism of oxygen transfer for lactoperoxidase. Biochemistry. 1991 Sep 17;30(37):8960–8964. doi: 10.1021/bi00101a007. [DOI] [PubMed] [Google Scholar]
  11. Fenna R., Zeng J., Davey C. Structure of the green heme in myeloperoxidase. Arch Biochem Biophys. 1995 Jan 10;316(1):653–656. doi: 10.1006/abbi.1995.1086. [DOI] [PubMed] [Google Scholar]
  12. Glass R. S. Cation radicals of organosulphur compounds. Xenobiotica. 1995 Jul;25(7):637–651. doi: 10.3109/00498259509061882. [DOI] [PubMed] [Google Scholar]
  13. Harris R. Z., Newmyer S. L., Ortiz de Montellano P. R. Horseradish peroxidase-catalyzed two-electron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites. J Biol Chem. 1993 Jan 25;268(3):1637–1645. [PubMed] [Google Scholar]
  14. Harrison J. E., Schultz J. Studies on the chlorinating activity of myeloperoxidase. J Biol Chem. 1976 Mar 10;251(5):1371–1374. [PubMed] [Google Scholar]
  15. Hofstra A. H., Uetrecht J. P. Myeloperoxidase-mediated activation of xenobiotics by human leukocytes. Toxicology. 1993 Oct 5;82(1-3):221–242. doi: 10.1016/0300-483x(93)90066-2. [DOI] [PubMed] [Google Scholar]
  16. Hoogland H., van Kuilenburg A., van Riel C., Muijsers A. O., Wever R. Spectral properties of myeloperoxidase compounds II and III. Biochim Biophys Acta. 1987 Nov 5;916(1):76–82. doi: 10.1016/0167-4838(87)90212-3. [DOI] [PubMed] [Google Scholar]
  17. Hori H., Fenna R. E., Kimura S., Ikeda-Saito M. Aromatic substrate molecules bind at the distal heme pocket of myeloperoxidase. J Biol Chem. 1994 Mar 18;269(11):8388–8392. [PubMed] [Google Scholar]
  18. Kettle A. J., Gedye C. A., Winterbourn C. C. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J. 1997 Jan 15;321(Pt 2):503–508. doi: 10.1042/bj3210503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kettle A. J., Winterbourn C. C. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J. 1988 Jun 1;252(2):529–536. doi: 10.1042/bj2520529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi S., Nakano M., Goto T., Kimura T., Schaap A. P. An evidence of the peroxidase-dependent oxygen transfer from hydrogen peroxide to sulfides. Biochem Biophys Res Commun. 1986 Feb 26;135(1):166–171. doi: 10.1016/0006-291x(86)90957-5. [DOI] [PubMed] [Google Scholar]
  21. Kobayashi S., Nakano M., Kimura T., Schaap A. P. On the mechanism of the peroxidase-catalyzed oxygen-transfer reaction. Biochemistry. 1987 Aug 11;26(16):5019–5022. doi: 10.1021/bi00390a020. [DOI] [PubMed] [Google Scholar]
  22. Libby R. D., Shedd A. L., Phipps A. K., Beachy T. M., Gerstberger S. M. Defining the involvement of HOCl or Cl2 as enzyme-generated intermediates in chloroperoxidase-catalyzed reactions. J Biol Chem. 1992 Jan 25;267(3):1769–1775. [PubMed] [Google Scholar]
  23. Modi S., Behere D. V., Mitra S. Binding of aromatic donor molecules to lactoperoxidase: proton NMR and optical difference spectroscopic studies. Biochim Biophys Acta. 1989 Jul 6;996(3):214–225. doi: 10.1016/0167-4838(89)90250-1. [DOI] [PubMed] [Google Scholar]
  24. Moguilevsky N., Garcia-Quintana L., Jacquet A., Tournay C., Fabry L., Piérard L., Bollen A. Structural and biological properties of human recombinant myeloperoxidase produced by Chinese hamster ovary cell lines. Eur J Biochem. 1991 May 8;197(3):605–614. doi: 10.1111/j.1432-1033.1991.tb15950.x. [DOI] [PubMed] [Google Scholar]
  25. Pasta P., Carrea G., Colonna S., Gaggero N. Effects of chloride on the kinetics and stereochemistry of chloroperoxidase catalyzed oxidation of sulfides. Biochim Biophys Acta. 1994 Dec 14;1209(2):203–208. doi: 10.1016/0167-4838(94)90185-6. [DOI] [PubMed] [Google Scholar]
  26. Plé P., Marnett L. J. Alkylaryl sulfides as peroxidase reducing substrates for prostaglandin H synthase. Probes for the reactivity and environment of the ferryl-oxo complex. J Biol Chem. 1989 Aug 25;264(24):13983–13993. [PubMed] [Google Scholar]
  27. Sakurada J., Takahashi S., Hosoya T. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase. J Biol Chem. 1986 Jul 25;261(21):9657–9662. [PubMed] [Google Scholar]
  28. Subrahmanyam V. V., Kolachana P., Smith M. T. Metabolism of hydroquinone by human myeloperoxidase: mechanisms of stimulation by other phenolic compounds. Arch Biochem Biophys. 1991 Apr;286(1):76–84. doi: 10.1016/0003-9861(91)90010-g. [DOI] [PubMed] [Google Scholar]
  29. Wever R., Kast W. M., Kasinoedin J. H., Boelens R. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochim Biophys Acta. 1982 Dec 20;709(2):212–219. doi: 10.1016/0167-4838(82)90463-0. [DOI] [PubMed] [Google Scholar]
  30. Zeng J., Fenna R. E. X-ray crystal structure of canine myeloperoxidase at 3 A resolution. J Mol Biol. 1992 Jul 5;226(1):185–207. doi: 10.1016/0022-2836(92)90133-5. [DOI] [PubMed] [Google Scholar]
  31. Zgliczynski J. M., Selvaraj R. J., Paul B. B., Stelmaszynska T., Poskitt P. K., Sbarra A. J. Chlorination by the myeloperoxidase-H2O2-Cl- antimicrobial system at acid and neutral pH. Proc Soc Exp Biol Med. 1977 Mar;154(3):418–422. doi: 10.3181/00379727-154-39684. [DOI] [PubMed] [Google Scholar]
  32. van Dalen C. J., Whitehouse M. W., Winterbourn C. C., Kettle A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 1997 Oct 15;327(Pt 2):487–492. doi: 10.1042/bj3270487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES