Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 1;335(Pt 1):35–42. doi: 10.1042/bj3350035

Localization of a cyclopentenone prostaglandin to the endoplasmic reticulum and induction of BiP mRNA.

S Takahashi 1, N Odani 1, K Tomokiyo 1, K Furuta 1, M Suzuki 1, A Ichikawa 1, M Negishi 1
PMCID: PMC1219749  PMID: 9742210

Abstract

Cyclopentenone prostaglandins (PGs) are transported into cells and stimulate the expression of various stress genes, such as that coding for BiP (an ER luminal protein). To reveal the site of action of the PGs for the induction of stress-gene expression, we introduced a fluorescent probe, pyrene, into two types of PG analogue, GIF0010 (a cyclopentenone type) and GIF0037 (a cyclopentanone type) and examined their intracellular localization in normal rat kidney cells and their ability to induce the BiP gene expression. GIF0010 accumulated around the nuclei and coincided with BiP, a resident protein in the endoplasmic reticulum (ER) and markedly induced BiP gene expression. By contrast, GIF0037 and pyrene neither accumulated in the cell nor induced BiP gene expression. Thus the ER localization of GIF0010 and the induction of gene expression by GIF0010 are ascribed to the cyclopentenone structure. Treatment with cycloheximide inhibited both the accumulation of GIF0010 and the induction of the BiP mRNA, suggesting that the ER localization of the PG and subsequent gene expression require the nascent protein synthesis. These results demonstrate that the cyclopentenone PG is specifically accumulated in the ER, transducing a signal for BiP gene expression in the nuclei.

Full Text

The Full Text of this article is available as a PDF (471.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atsmon J., Freeman M. L., Meredith M. J., Sweetman B. J., Roberts L. J., 2nd Conjugation of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 with intracellular glutathione and enhancement of its antiproliferative activity by glutathione depletion. Cancer Res. 1990 Mar 15;50(6):1879–1885. [PubMed] [Google Scholar]
  2. Atsmon J., Sweetman B. J., Baertschi S. W., Harris T. M., Roberts L. J., 2nd Formation of thiol conjugates of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 and delta 12(E)-prostaglandin D2. Biochemistry. 1990 Apr 17;29(15):3760–3765. doi: 10.1021/bi00467a023. [DOI] [PubMed] [Google Scholar]
  3. Cox J. S., Shamu C. E., Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993 Jun 18;73(6):1197–1206. doi: 10.1016/0092-8674(93)90648-a. [DOI] [PubMed] [Google Scholar]
  4. Cox J. S., Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell. 1996 Nov 1;87(3):391–404. doi: 10.1016/s0092-8674(00)81360-4. [DOI] [PubMed] [Google Scholar]
  5. Forman B. M., Tontonoz P., Chen J., Brun R. P., Spiegelman B. M., Evans R. M. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995 Dec 1;83(5):803–812. doi: 10.1016/0092-8674(95)90193-0. [DOI] [PubMed] [Google Scholar]
  6. Fukushima M. Prostaglandin J2--anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids. 1990;3(4):189–199. [PubMed] [Google Scholar]
  7. Horn M., Banting G. Okadaic acid treatment leads to a fragmentation of the trans-Golgi network and an increase in expression of TGN38 at the cell surface. Biochem J. 1994 Jul 1;301(Pt 1):69–73. doi: 10.1042/bj3010069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ito S., Narumiya S., Hayaishi O. Prostaglandin D2: a biochemical perspective. Prostaglandins Leukot Essent Fatty Acids. 1989 Sep;37(4):219–234. doi: 10.1016/0952-3278(89)90033-1. [DOI] [PubMed] [Google Scholar]
  9. Kim I. K., Lee J. H., Sohn H. W., Kim H. S., Kim S. H. Prostaglandin A2 and delta 12-prostaglandin J2 induce apoptosis in L1210 cells. FEBS Lett. 1993 Apr 26;321(2-3):209–214. doi: 10.1016/0014-5793(93)80110-g. [DOI] [PubMed] [Google Scholar]
  10. Kliewer S. A., Lenhard J. M., Willson T. M., Patel I., Morris D. C., Lehmann J. M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995 Dec 1;83(5):813–819. doi: 10.1016/0092-8674(95)90194-9. [DOI] [PubMed] [Google Scholar]
  11. Kohno K., Normington K., Sambrook J., Gething M. J., Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993 Feb;13(2):877–890. doi: 10.1128/mcb.13.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koizumi T., Negishi M., Ichikawa A. Activation of heat shock transcription factors by delta 12-prostaglandin J2 and its inhibition by intracellular glutathione. Biochem Pharmacol. 1993 Jun 22;45(12):2457–2464. doi: 10.1016/0006-2952(93)90227-n. [DOI] [PubMed] [Google Scholar]
  13. Koizumi T., Odani N., Okuyama T., Ichikawa A., Negishi M. Identification of a cis-regulatory element for delta 12-prostaglandin J2-induced expression of the rat heme oxygenase gene. J Biol Chem. 1995 Sep 15;270(37):21779–21784. doi: 10.1074/jbc.270.37.21779. [DOI] [PubMed] [Google Scholar]
  14. Kozutsumi Y., Normington K., Press E., Slaughter C., Sambrook J., Gething M. J. Identification of immunoglobulin heavy chain binding protein as glucose-regulated protein 78 on the basis of amino acid sequence, immunological cross-reactivity, and functional activity. J Cell Sci Suppl. 1989;11:115–137. doi: 10.1242/jcs.1989.supplement_11.10. [DOI] [PubMed] [Google Scholar]
  15. Kozutsumi Y., Segal M., Normington K., Gething M. J., Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988 Mar 31;332(6163):462–464. doi: 10.1038/332462a0. [DOI] [PubMed] [Google Scholar]
  16. Kuznetsov G., Bush K. T., Zhang P. L., Nigam S. K. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8584–8589. doi: 10.1073/pnas.93.16.8584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li W. W., Hsiung Y., Zhou Y., Roy B., Lee A. S. Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol. 1997 Jan;17(1):54–60. doi: 10.1128/mcb.17.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mori K., Kawahara T., Yoshida H., Yanagi H., Yura T. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells. 1996 Sep;1(9):803–817. doi: 10.1046/j.1365-2443.1996.d01-274.x. [DOI] [PubMed] [Google Scholar]
  19. Mori K., Ma W., Gething M. J., Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993 Aug 27;74(4):743–756. doi: 10.1016/0092-8674(93)90521-q. [DOI] [PubMed] [Google Scholar]
  20. Narumiya S., Fukushima M. Site and mechanism of growth inhibition by prostaglandins. I. Active transport and intracellular accumulation of cyclopentenone prostaglandins, a reaction leading to growth inhibition. J Pharmacol Exp Ther. 1986 Nov;239(2):500–505. [PubMed] [Google Scholar]
  21. Narumiya S., Ohno K., Fujiwara M., Fukushima M. Site and mechanism of growth inhibition by prostaglandins. II. Temperature-dependent transfer of a cyclopentenone prostaglandin to nuclei. J Pharmacol Exp Ther. 1986 Nov;239(2):506–511. [PubMed] [Google Scholar]
  22. Narumiya S., Ohno K., Fukushima M., Fujiwara M. Site and mechanism of growth inhibition by prostaglandins. III. Distribution and binding of prostaglandin A2 and delta 12-prostaglandin J2 in nuclei. J Pharmacol Exp Ther. 1987 Jul;242(1):306–311. [PubMed] [Google Scholar]
  23. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  24. Negishi M., Koizumi T., Ichikawa A. Biological actions of delta 12-prostaglandin J2. J Lipid Mediat Cell Signal. 1995 Oct;12(2-3):443–448. doi: 10.1016/0929-7855(95)00029-p. [DOI] [PubMed] [Google Scholar]
  25. Negishi M., Sugimoto Y., Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta. 1995 Oct 26;1259(1):109–119. doi: 10.1016/0005-2760(95)00146-4. [DOI] [PubMed] [Google Scholar]
  26. Odani N., Negishi M., Takahashi S., Ichikawa A. Induction of protein disulfide isomerase mRNA by delta 12-prostaglandin J2. Biochem Biophys Res Commun. 1996 Mar 18;220(2):264–268. doi: 10.1006/bbrc.1996.0393. [DOI] [PubMed] [Google Scholar]
  27. Odani N., Negishi M., Takahashi S., Kitano Y., Kozutsumi Y., Ichikawa A. Regulation of BiP gene expression by cyclopentenone prostaglandins through unfolded protein response element. J Biol Chem. 1996 Jul 12;271(28):16609–16613. doi: 10.1074/jbc.271.28.16609. [DOI] [PubMed] [Google Scholar]
  28. Reinbothe S., Reinbothe C., Lehmann J., Becker W., Apel K., Parthier B. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7012–7016. doi: 10.1073/pnas.91.15.7012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Santoro M. G., Garaci E., Amici C. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8407–8411. doi: 10.1073/pnas.86.21.8407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shamu C. E., Cox J. S., Walter P. The unfolded-protein-response pathway in yeast. Trends Cell Biol. 1994 Feb;4(2):56–60. doi: 10.1016/0962-8924(94)90011-6. [DOI] [PubMed] [Google Scholar]
  31. Shamu C. E., Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 1996 Jun 17;15(12):3028–3039. [PMC free article] [PubMed] [Google Scholar]
  32. Sidrauski C., Cox J. S., Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell. 1996 Nov 1;87(3):405–413. doi: 10.1016/s0092-8674(00)81361-6. [DOI] [PubMed] [Google Scholar]
  33. Sidrauski C., Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997 Sep 19;90(6):1031–1039. doi: 10.1016/s0092-8674(00)80369-4. [DOI] [PubMed] [Google Scholar]
  34. Tontonoz P., Hu E., Graves R. A., Budavari A. I., Spiegelman B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May 15;8(10):1224–1234. doi: 10.1101/gad.8.10.1224. [DOI] [PubMed] [Google Scholar]
  35. Umebayashi K., Hirata A., Fukuda R., Horiuchi H., Ohta A., Takagi M. Accumulation of misfolded protein aggregates leads to the formation of russell body-like dilated endoplasmic reticulum in yeast. Yeast. 1997 Sep 15;13(11):1009–1020. doi: 10.1002/(SICI)1097-0061(19970915)13:11<1009::AID-YEA157>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  36. Welihinda A. A., Kaufman R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem. 1996 Jul 26;271(30):18181–18187. doi: 10.1074/jbc.271.30.18181. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES