Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 1;335(Pt 1):79–84. doi: 10.1042/bj3350079

Transcription of the juvenile hormone esterase gene under the control of both an initiator and AT-rich motif.

G Jones 1, M Manczak 1, D Schelling 1, H Turner 1, D Jones 1
PMCID: PMC1219754  PMID: 9742215

Abstract

The binding of transcription factors to the core promoter of the juvenile hormone esterase gene was functionally characterized using both a cell-free in vitro transcription functional assay and a cell transfection assay. A core JHE promoter (-61 to +28 bp relative to transcription start site) supported faithful transcription from the in vivo transcription start site. The nuclear extracts from the Sf9 insect cell line that provided transcription from that template also bound to that template as a probe in gel-mobility shift assays. Deletion or transversion of the initiator-binding motif (-1 to +4 bp) abolished detectable transcription either in vitro or in transfected cells. An AT-rich motif (ATATAT; -28 to -23 bp) serves another transcription factor-binding site. Mutation of the AT-rich motif to a canonical TATA-box preserved transcription, while either its deletion or complete transversion abolished or significantly reduced detectable transcriptional activity. These results indicate that, under these conditions, the functional operation of this core promoter approaches that of a composite promoter in which both the TATA- and initiator-binding protein complexes are necessary, even for basal transcription. On the other hand, these debilitating mutations to either the TATA box or initiator motif did not prevent the ability of the corresponding gel-shift competitive probes to compete with the wild-type promoter for binding by the transcription factors. Even a double transversion of both the AT-rich motif and the initiator-binding motif was able to competitively displace the protein complex that bound to the labelled wild-type probe. These data strongly indicate the presence of (an) additional core-promoter-associated transcription factor(s) (that is not the 'downstream element') that contact(s) the AT-binding complex and/or initiator-binding factor with sufficient avidity to remove them from binding to the competing wild-type promoter sequence.

Full Text

The Full Text of this article is available as a PDF (296.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellorini M., Dantonel J. C., Yoon J. B., Roeder R. G., Tora L., Mantovani R. The major histocompatibility complex class II Ea promoter requires TFIID binding to an initiator sequence. Mol Cell Biol. 1996 Feb;16(2):503–512. doi: 10.1128/mcb.16.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bogue M., Gilfillan S., Benoist C., Mathis D. Regulation of N-region diversity in antigen receptors through thymocyte differentiation and thymus ontogeny. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11011–11015. doi: 10.1073/pnas.89.22.11011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breen J. J., Hickok N. J., Gurr J. A. The rat TSHbeta gene contains distinct response elements for regulation by retinoids and thyroid hormone. Mol Cell Endocrinol. 1997 Aug 8;131(2):137–146. doi: 10.1016/s0303-7207(97)00099-3. [DOI] [PubMed] [Google Scholar]
  4. Burke T. W., Kadonaga J. T. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 1996 Mar 15;10(6):711–724. doi: 10.1101/gad.10.6.711. [DOI] [PubMed] [Google Scholar]
  5. Burley S. K. X-ray crystallographic studies of eukaryotic transcription initiation factors. Philos Trans R Soc Lond B Biol Sci. 1996 Apr 29;351(1339):483–489. doi: 10.1098/rstb.1996.0046. [DOI] [PubMed] [Google Scholar]
  6. Böttinger E. P., Shelley C. S., Farokhzad O. C., Arnaout M. A. The human beta 2 integrin CD18 promoter consists of two inverted Ets cis elements. Mol Cell Biol. 1994 Apr;14(4):2604–2615. doi: 10.1128/mcb.14.4.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carcamo J., Buckbinder L., Reinberg D. The initiator directs the assembly of a transcription factor IID-dependent transcription complex. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8052–8056. doi: 10.1073/pnas.88.18.8052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cherbas L., Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. doi: 10.1016/0965-1748(93)90085-7. [DOI] [PubMed] [Google Scholar]
  9. Cherbas L., Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. doi: 10.1016/0965-1748(93)90085-7. [DOI] [PubMed] [Google Scholar]
  10. Chiang J. Y., Stroup D. Identification and characterization of a putative bile acid-responsive element in cholesterol 7 alpha-hydroxylase gene promoter. J Biol Chem. 1994 Jul 1;269(26):17502–17507. [PubMed] [Google Scholar]
  11. Colgan J., Manley J. L. Cooperation between core promoter elements influences transcriptional activity in vivo. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1955–1959. doi: 10.1073/pnas.92.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davison B. L., Egly J. M., Mulvihill E. R., Chambon P. Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature. 1983 Feb 24;301(5902):680–686. doi: 10.1038/301680a0. [DOI] [PubMed] [Google Scholar]
  13. Desvergne B., Favez T. The major transcription initiation site of the SV40 late promoter is a potent thyroid hormone response element. Nucleic Acids Res. 1997 May 1;25(9):1774–1781. doi: 10.1093/nar/25.9.1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hahn S., Buratowski S., Sharp P. A., Guarente L. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5718–5722. doi: 10.1073/pnas.86.15.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jiang S. W., Shepard A. R., Eberhardt N. L. An initiator element is required for maximal human chorionic somatomammotropin gene promoter and enhancer function. J Biol Chem. 1995 Feb 24;270(8):3683–3692. doi: 10.1074/jbc.270.8.3683. [DOI] [PubMed] [Google Scholar]
  16. Jones G. Molecular mechanisms of action of juvenile hormone. Annu Rev Entomol. 1995;40:147–169. doi: 10.1146/annurev.en.40.010195.001051. [DOI] [PubMed] [Google Scholar]
  17. Jones G., O'Mahony P., Chang S., Schachtschabel U. Identification of regulatory sequences of juvenile hormone-sensitive and -insensitive serum protein-encoding genes. Gene. 1996 Sep 16;173(2):209–214. doi: 10.1016/0378-1119(96)00100-x. [DOI] [PubMed] [Google Scholar]
  18. Jones G., Sharp P. A. Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13499–13503. doi: 10.1073/pnas.94.25.13499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaufmann J., Smale S. T. Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev. 1994 Apr 1;8(7):821–829. doi: 10.1101/gad.8.7.821. [DOI] [PubMed] [Google Scholar]
  20. Kawakami K., Masuda K., Nagano K., Ohkuma Y., Roeder R. G. Characterization of the core promoter of the Na+/K(+)-ATPase alpha 1 subunit gene. Elements required for transcription by RNA polymerase II and RNA polymerase III in vitro. Eur J Biochem. 1996 Apr 15;237(2):440–446. doi: 10.1111/j.1432-1033.1996.0440k.x. [DOI] [PubMed] [Google Scholar]
  21. Lewis B. A., Orkin S. H. A functional initiator element in the human beta-globin promoter. J Biol Chem. 1995 Nov 24;270(47):28139–28144. doi: 10.1074/jbc.270.47.28139. [DOI] [PubMed] [Google Scholar]
  22. Li R., Luciakova K., Zaid A., Betina S., Fridell E., Nelson B. D. Thyroid hormone activates transcription from the promoter regions of some human nuclear-encoded genes of the oxidative phosphorylation system. Mol Cell Endocrinol. 1997 Apr 4;128(1-2):69–75. doi: 10.1016/s0303-7207(97)04023-9. [DOI] [PubMed] [Google Scholar]
  23. Lo K., Smale S. T. Generality of a functional initiator consensus sequence. Gene. 1996 Dec 5;182(1-2):13–22. doi: 10.1016/s0378-1119(96)00438-6. [DOI] [PubMed] [Google Scholar]
  24. Luo X., Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol. 1996 Apr;16(4):1367–1375. doi: 10.1128/mcb.16.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mantovani R., Tora L., Moncollin V., Egly J. M., Benoist C., Mathis D. The major histocompatibility complex (MHC) Ea promoter: sequences and factors at the initiation site. Nucleic Acids Res. 1993 Oct 25;21(21):4873–4878. doi: 10.1093/nar/21.21.4873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manzano-Winkler B., Novina C. D., Roy A. L. TFII is required for transcription of the naturally TATA-less but initiator-containing Vbeta promoter. J Biol Chem. 1996 May 17;271(20):12076–12081. doi: 10.1074/jbc.271.20.12076. [DOI] [PubMed] [Google Scholar]
  27. May M., Mengus G., Lavigne A. C., Chambon P., Davidson I. Human TAF(II28) promotes transcriptional stimulation by activation function 2 of the retinoid X receptors. EMBO J. 1996 Jun 17;15(12):3093–3104. [PMC free article] [PubMed] [Google Scholar]
  28. Means A. L., Farnham P. J. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site. Mol Cell Biol. 1990 Feb;10(2):653–661. doi: 10.1128/mcb.10.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakajima N., Horikoshi M., Roeder R. G. Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol Cell Biol. 1988 Oct;8(10):4028–4040. doi: 10.1128/mcb.8.10.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakatani Y., Horikoshi M., Brenner M., Yamamoto T., Besnard F., Roeder R. G., Freese E. A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID. Nature. 1990 Nov 1;348(6296):86–88. doi: 10.1038/348086a0. [DOI] [PubMed] [Google Scholar]
  31. Novina C. D., Roy A. L. Core promoters and transcriptional control. Trends Genet. 1996 Sep;12(9):351–355. [PubMed] [Google Scholar]
  32. Pscherer A., Dörflinger U., Kirfel J., Gawlas K., Rüschoff J., Buettner R., Schüle R. The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the human somatostatin receptor II gene. EMBO J. 1996 Dec 2;15(23):6680–6690. [PMC free article] [PubMed] [Google Scholar]
  33. Pugh B. F., Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991 Nov;5(11):1935–1945. doi: 10.1101/gad.5.11.1935. [DOI] [PubMed] [Google Scholar]
  34. Purdy J. E., Pho L. T., Mann B. J., Petri W. A., Jr Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol. 1996 Jun;78(1-2):91–103. doi: 10.1016/s0166-6851(96)02614-x. [DOI] [PubMed] [Google Scholar]
  35. Purnell B. A., Emanuel P. A., Gilmour D. S. TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes Dev. 1994 Apr 1;8(7):830–842. doi: 10.1101/gad.8.7.830. [DOI] [PubMed] [Google Scholar]
  36. Roy A. L., Meisterernst M., Pognonec P., Roeder R. G. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature. 1991 Nov 21;354(6350):245–248. doi: 10.1038/354245a0. [DOI] [PubMed] [Google Scholar]
  37. Schelling D., Jones G. Functional identification of the transcription start site and the core promoter of the juvenile hormone esterase gene in Trichoplusia ni. Biochem Biophys Res Commun. 1995 Sep 5;214(1):286–294. doi: 10.1006/bbrc.1995.2286. [DOI] [PubMed] [Google Scholar]
  38. Seto E., Shi Y., Shenk T. YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature. 1991 Nov 21;354(6350):241–245. doi: 10.1038/354241a0. [DOI] [PubMed] [Google Scholar]
  39. Seto E., Shi Y., Shenk T. YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature. 1991 Nov 21;354(6350):241–245. doi: 10.1038/354241a0. [DOI] [PubMed] [Google Scholar]
  40. Singer V. L., Wobbe C. R., Struhl K. A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev. 1990 Apr;4(4):636–645. doi: 10.1101/gad.4.4.636. [DOI] [PubMed] [Google Scholar]
  41. Smale S. T., Baltimore D. The "initiator" as a transcription control element. Cell. 1989 Apr 7;57(1):103–113. doi: 10.1016/0092-8674(89)90176-1. [DOI] [PubMed] [Google Scholar]
  42. Taylor A. H., Wishart P., Lawless D. E., Raymond J., Wong N. C. Identification of functional positive and negative thyroid hormone-responsive elements in the rat apolipoprotein AI promoter. Biochemistry. 1996 Jun 25;35(25):8281–8288. doi: 10.1021/bi960269o. [DOI] [PubMed] [Google Scholar]
  43. Tyree C. M., George C. P., Lira-DeVito L. M., Wampler S. L., Dahmus M. E., Zawel L., Kadonaga J. T. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 1993 Jul;7(7A):1254–1265. doi: 10.1101/gad.7.7a.1254. [DOI] [PubMed] [Google Scholar]
  44. Venkataraman V., O'Mahony P. J., Manzcak M., Jones G. Regulation of juvenile hormone esterase gene transcription by juvenile hormone. Dev Genet. 1994;15(5):391–400. doi: 10.1002/dvg.1020150502. [DOI] [PubMed] [Google Scholar]
  45. Verrijzer C. P., Chen J. L., Yokomori K., Tjian R. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell. 1995 Jun 30;81(7):1115–1125. doi: 10.1016/s0092-8674(05)80016-9. [DOI] [PubMed] [Google Scholar]
  46. Verrijzer C. P., Yokomori K., Chen J. L., Tjian R. Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA. Science. 1994 May 13;264(5161):933–941. doi: 10.1126/science.8178153. [DOI] [PubMed] [Google Scholar]
  47. Wang J. C., Van Dyke M. W. Initiator sequences direct downstream promoter binding by human transcription factor IID. Biochim Biophys Acta. 1993 Oct 19;1216(1):73–80. doi: 10.1016/0167-4781(93)90039-g. [DOI] [PubMed] [Google Scholar]
  48. Wiley S. R., Kraus R. J., Zuo F., Murray E. E., Loritz K., Mertz J. E. SV40 early-to-late switch involves titration of cellular transcriptional repressors. Genes Dev. 1993 Nov;7(11):2206–2219. doi: 10.1101/gad.7.11.2206. [DOI] [PubMed] [Google Scholar]
  49. Wo Y. Y., Stewart J., Greenlee W. F. Functional analysis of the promoter for the human CYP1B1 gene. J Biol Chem. 1997 Oct 17;272(42):26702–26707. doi: 10.1074/jbc.272.42.26702. [DOI] [PubMed] [Google Scholar]
  50. Yanai K., Nibu Y., Murakami K., Fukamizu A. A cis-acting DNA element located between TATA box and transcription initiation site is critical in response to regulatory sequences in human angiotensinogen gene. J Biol Chem. 1996 Jul 5;271(27):15981–15986. doi: 10.1074/jbc.271.27.15981. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES