Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 1;335(Pt 1):85–94. doi: 10.1042/bj3350085

Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.

L Jornot 1, H Petersen 1, A F Junod 1
PMCID: PMC1219755  PMID: 9742216

Abstract

In cells undergoing oxidative stress, DNA damage may result from attack by .OH radicals produced by the Fenton reaction, and/or by nucleases activated by nuclear calcium. In the present study, the participation of these two mechanisms was investigated in HeLa cells. Nuclear-targeted aequorin was used for selectively monitoring Ca2+ concentrations within the nuclei ([Ca2+]n), in conjunction with the cell-permeant calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), the lipid-soluble broad-spectrum metal chelator with low affinity for Ca2+ and Mg2+ N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and the high-affinity iron/copper chelator 1, 10-phenanthroline (PHE). In Ca2+-containing medium, H2O2 induced extensive DNA strand breaks and an increase in [Ca2+]n that was almost identical to that observed in the cytosol ([Ca2+]c). In cells bathed in Ca2+-free/EGTA medium, in which the increases in [Ca2+]n and [Ca2+]c due to H2O2 were significantly reduced, similar levels of DNA fragmentation also occurred. In cells preloaded with BAPTA/AM or TPEN, the small increase of [Ca2+]n normally elicited by H2O2 in Ca2+-free medium was completely buffered, and DNA damage was largely prevented. On the other hand, pretreatment with PHE did not affect the calcium response in the nuclei, but completely prevented DNA strand breakage induced by H2O2. Re-addition of 100 microM CuSO4 and 100 microM FeSO4 to TPEN- and PHE-treated cells prior to H2O2 challenge reversed the effect of TPEN and PHE, whereas 1 mM was necessary to negate the effect of BAPTA/AM. The levels of DNA strand breakage observed, however, did not correlate with the amounts of 8-hydroxy 2'-deoxyguanosine (8-OHdG): H2O2 did not produce 8-OHdG, whereas PHE alone slightly increased 8-OHdG levels. CuSO4 and FeSO4 enhanced the effects of PHE, particularly in the presence of H2O2. Exposure of cells to a mixture of CuSO4/FeSO4 also resulted in a significant increase in 8-OHdG levels, which was prevented in cells preloaded with BAPTA/AM. Similar results were obtained in a cell-free system using isolated calf thymus DNA exposed to CuSO4/FeSO4, regardless of whether H2O2 was present or not. These results suggest that BAPTA/AM prevents H2O2-induced DNA damage by acting as an iron/copper chelator. These data also indicate that caution must be exercised in using Ca2+ chelating agents as evidence for a role in cellular Ca2+ levels in experimental conditions in which transition-metal-ion-mediated oxidant production is also occurring.

Full Text

The Full Text of this article is available as a PDF (612.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
  2. Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991 Feb 1;273(Pt 3):601–604. doi: 10.1042/bj2730601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Badminton M. N., Campbell A. K., Rembold C. M. Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J Biol Chem. 1996 Dec 6;271(49):31210–31214. doi: 10.1074/jbc.271.49.31210. [DOI] [PubMed] [Google Scholar]
  4. Brini M., Marsault R., Bastianutto C., Pozzan T., Rizzuto R. Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium. 1994 Oct;16(4):259–268. doi: 10.1016/0143-4160(94)90089-2. [DOI] [PubMed] [Google Scholar]
  5. Britigan B. E., Rasmussen G. T., Cox C. D. Binding of iron and inhibition of iron-dependent oxidative cell injury by the "calcium chelator" 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA). Biochem Pharmacol. 1998 Feb 1;55(3):287–295. doi: 10.1016/s0006-2952(97)00463-2. [DOI] [PubMed] [Google Scholar]
  6. Brown G. R., Köhler M., Berggren P. O. Parallel changes in nuclear and cytosolic calcium in mouse pancreatic beta-cells. Biochem J. 1997 Aug 1;325(Pt 3):771–778. doi: 10.1042/bj3250771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burkitt M. J., Milne L., Nicotera P., Orrenius S. 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions. Biochem J. 1996 Jan 1;313(Pt 1):163–169. doi: 10.1042/bj3130163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burkitt M. J., Milne L., Tsang S. Y., Tam S. C. Calcium indicator dye Quin2 inhibits hydrogen peroxide-induced DNA strand break formation via chelation of iron. Arch Biochem Biophys. 1994 Jun;311(2):321–328. doi: 10.1006/abbi.1994.1244. [DOI] [PubMed] [Google Scholar]
  9. Cantoni O., Sestili P., Cattabeni F., Bellomo G., Pou S., Cohen M., Cerutti P. Calcium chelator Quin 2 prevents hydrogen-peroxide-induced DNA breakage and cytotoxicity. Eur J Biochem. 1989 Jun 15;182(2):209–212. doi: 10.1111/j.1432-1033.1989.tb14819.x. [DOI] [PubMed] [Google Scholar]
  10. Chaudun E., Arruti C., Courtois Y., Ferrag F., Jeanny J. C., Patel B. N., Skidmore C., Torriglia A., Counis M. F. DNA strand breakage during physiological apoptosis of the embryonic chick lens: free 3' OH end single strand breaks do not accumulate even in the presence of a cation-independent deoxyribonuclease. J Cell Physiol. 1994 Feb;158(2):354–364. doi: 10.1002/jcp.1041580218. [DOI] [PubMed] [Google Scholar]
  11. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  12. Connor J. A. Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: intracellular movements and compartmentalization. Cell Calcium. 1993 Mar;14(3):185–200. doi: 10.1016/0143-4160(93)90066-f. [DOI] [PubMed] [Google Scholar]
  13. Doan T. N., Gentry D. L., Taylor A. A., Elliott S. J. Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J. 1994 Jan 1;297(Pt 1):209–215. doi: 10.1042/bj2970209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gunther M. R., Hanna P. M., Mason R. P., Cohen M. S. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys. 1995 Jan 10;316(1):515–522. doi: 10.1006/abbi.1995.1068. [DOI] [PubMed] [Google Scholar]
  15. Halliwell B., Gutteridge J. M. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 1992 Jul 27;307(1):108–112. doi: 10.1016/0014-5793(92)80911-y. [DOI] [PubMed] [Google Scholar]
  16. Hanna P. M., Mason R. P. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys. 1992 May 15;295(1):205–213. doi: 10.1016/0003-9861(92)90507-s. [DOI] [PubMed] [Google Scholar]
  17. Hernández-Cruz A., Sala F., Adams P. R. Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science. 1990 Feb 16;247(4944):858–862. doi: 10.1126/science.2154851. [DOI] [PubMed] [Google Scholar]
  18. Higuchi Y., Linn S. Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem. 1995 Apr 7;270(14):7950–7956. doi: 10.1074/jbc.270.14.7950. [DOI] [PubMed] [Google Scholar]
  19. Horikoshi Y., Furuno T., Teshima R., Sawada J., Nakanishi M. Thapsigargin-induced nuclear calcium signals in rat basophilic leukaemia cells. Biochem J. 1994 Nov 15;304(Pt 1):57–60. doi: 10.1042/bj3040057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ikebuchi Y., Masumoto N., Tasaka K., Koike K., Kasahara K., Miyake A., Tanizawa O. Superoxide anion increases intracellular pH, intracellular free calcium, and arachidonate release in human amnion cells. J Biol Chem. 1991 Jul 15;266(20):13233–13237. [PubMed] [Google Scholar]
  21. Ikeda M., Ariyoshi H., Kambayashi J., Fujitani K., Shinoki N., Sakon M., Kawasaki T., Monden M. Separate analysis of nuclear and cytosolic Ca2+ concentrations in human umbilical vein endothelial cells. J Cell Biochem. 1996 Oct;63(1):23–36. doi: 10.1002/(sici)1097-4644(199610)63:1<23::aid-jcb2>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  22. Jones D. P., McConkey D. J., Nicotera P., Orrenius S. Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem. 1989 Apr 15;264(11):6398–6403. [PubMed] [Google Scholar]
  23. Jornot L., Petersen H., Junod A. F. Differential protective effects of O-phenanthroline and catalase on H2O2-induced DNA damage and inhibition of protein synthesis in endothelial cells. J Cell Physiol. 1991 Dec;149(3):408–413. doi: 10.1002/jcp.1041490308. [DOI] [PubMed] [Google Scholar]
  24. Kaur H., Halliwell B. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochem J. 1996 Aug 15;318(Pt 1):21–23. doi: 10.1042/bj3180021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muehlematter D., Larsson R., Cerutti P. Active oxygen induced DNA strand breakage and poly ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells. Carcinogenesis. 1988 Feb;9(2):239–245. doi: 10.1093/carcin/9.2.239. [DOI] [PubMed] [Google Scholar]
  26. Nicotera P., McConkey D. J., Jones D. P., Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci U S A. 1989 Jan;86(2):453–457. doi: 10.1073/pnas.86.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olive P. L. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen. 1988;11(4):487–495. doi: 10.1002/em.2850110409. [DOI] [PubMed] [Google Scholar]
  28. Przywara D. A., Bhave S. V., Bhave A., Wakade T. D., Wakade A. R. Stimulated rise in neuronal calcium is faster and greater in the nucleus than the cytosol. FASEB J. 1991 Feb;5(2):217–222. doi: 10.1096/fasebj.5.2.2004666. [DOI] [PubMed] [Google Scholar]
  29. Shigenaga M. K., Aboujaoude E. N., Chen Q., Ames B. N. Assays of oxidative DNA damage biomarkers 8-oxo-2'-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1994;234:16–33. doi: 10.1016/0076-6879(94)34073-0. [DOI] [PubMed] [Google Scholar]
  30. Spencer J. P., Jenner A., Aruoma O. I., Cross C. E., Wu R., Halliwell B. Oxidative DNA damage in human respiratory tract epithelial cells. Time course in relation to DNA strand breakage. Biochem Biophys Res Commun. 1996 Jul 5;224(1):17–22. doi: 10.1006/bbrc.1996.0977. [DOI] [PubMed] [Google Scholar]
  31. Spencer J. P., Jenner A., Chimel K., Aruoma O. I., Cross C. E., Wu R., Halliwell B. DNA strand breakage and base modification induced by hydrogen peroxide treatment of human respiratory tract epithelial cells. FEBS Lett. 1995 Oct 30;374(2):233–236. doi: 10.1016/0014-5793(95)01117-w. [DOI] [PubMed] [Google Scholar]
  32. Tsang S. Y., Tam S. C., Bremner I., Burkitt M. J. Research communication copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem J. 1996 Jul 1;317(Pt 1):13–16. doi: 10.1042/bj3170013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  34. Williams D. A., Becker P. L., Fay F. S. Regional changes in calcium underlying contraction of single smooth muscle cells. Science. 1987 Mar 27;235(4796):1644–1648. doi: 10.1126/science.3103219. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES