Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 1;335(Pt 1):125–130. doi: 10.1042/bj3350125

Functional properties of a naturally occurring isoform of soluble guanylyl cyclase.

M Russwurm 1, S Behrends 1, C Harteneck 1, D Koesling 1
PMCID: PMC1219760  PMID: 9742221

Abstract

Soluble guanylyl cyclase (sGC), the target enzyme of the signalling molecule NO, contains one prosthetic haem group and consists of an alpha and a beta subunit. So far, only the alpha1beta1 heterodimer has been shown to exist in different cells and tissues, and most biochemical studies of sGC have been performed with the alpha1 beta1 heterodimer. Here we demonstrate for the first time the natural occurrence of the alpha2 subunit on the protein level. The alpha2 subunit co-precipitated with the beta1 subunit from human placenta, showing the existence of the alpha2 beta1 isoform in vivo. The new enzyme was expressed in and purified from cells from the Spodoptera frugiperda ovary cell line Sf 9. Spectral analysis showed that the alpha2 beta1 heterodimer contains a prosthetic haem group revealing the same characteristics as the haem in the alpha1 beta1 form. The kinetic properties of both isoforms and sensitivity towards NO were indistinguishable. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of sGC, abolished NO-stimulated activity of both heterodimers. The new NO-independent activator, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), increased the maximal NO-stimulated activity of the new isoform, caused a leftward-shift in the NO concentration-response curve and turned CO into an effective activator, as it did for the alpha1 beta1 heterodimer (200-fold activation). In summary, the differences in primary structure of both alpha subunits are contrasted by their functional similarity. Further studies will be needed to elucidate the physiological purpose of the new isoform.

Full Text

The Full Text of this article is available as a PDF (389.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behrends S., Harteneck C., Schultz G., Koesling D. A variant of the alpha 2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclases and functions as a dominant negative protein. J Biol Chem. 1995 Sep 8;270(36):21109–21113. doi: 10.1074/jbc.270.36.21109. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Buechler W. A., Nakane M., Murad F. Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem Biophys Res Commun. 1991 Jan 15;174(1):351–357. doi: 10.1016/0006-291x(91)90527-e. [DOI] [PubMed] [Google Scholar]
  4. Foerster J., Harteneck C., Malkewitz J., Schultz G., Koesling D. A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of alpha 1 and beta 1 subunits. Eur J Biochem. 1996 Sep 1;240(2):380–386. doi: 10.1111/j.1432-1033.1996.0380h.x. [DOI] [PubMed] [Google Scholar]
  5. Friebe A., Schultz G., Koesling D. Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J. 1996 Dec 16;15(24):6863–6868. [PMC free article] [PubMed] [Google Scholar]
  6. Garbers D. L., Koesling D., Schultz G. Guanylyl cyclase receptors. Mol Biol Cell. 1994 Jan;5(1):1–5. doi: 10.1091/mbc.5.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giaid A., Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214–221. doi: 10.1056/NEJM199507273330403. [DOI] [PubMed] [Google Scholar]
  8. Harteneck C., Koesling D., Söling A., Schultz G., Böhme E. Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett. 1990 Oct 15;272(1-2):221–223. doi: 10.1016/0014-5793(90)80489-6. [DOI] [PubMed] [Google Scholar]
  9. Harteneck C., Wedel B., Koesling D., Malkewitz J., Böhme E., Schultz G. Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett. 1991 Nov 4;292(1-2):217–222. doi: 10.1016/0014-5793(91)80871-y. [DOI] [PubMed] [Google Scholar]
  10. Humbert P., Niroomand F., Fischer G., Mayer B., Koesling D., Hinsch K. D., Gausepohl H., Frank R., Schultz G., Böhme E. Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem. 1990 Jun 20;190(2):273–278. doi: 10.1111/j.1432-1033.1990.tb15572.x. [DOI] [PubMed] [Google Scholar]
  11. Idriss S. D., Pilz R. B., Sharma V. S., Boss G. R. Studies on cytosolic guanylate cyclase from human placenta. Biochem Biophys Res Commun. 1992 Feb 28;183(1):312–320. doi: 10.1016/0006-291x(92)91645-7. [DOI] [PubMed] [Google Scholar]
  12. Ignarro L. J. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol. 1991 Feb 15;41(4):485–490. doi: 10.1016/0006-2952(91)90618-f. [DOI] [PubMed] [Google Scholar]
  13. Koesling D., Herz J., Gausepohl H., Niroomand F., Hinsch K. D., Mülsch A., Böhme E., Schultz G., Frank R. The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Lett. 1988 Oct 24;239(1):29–34. doi: 10.1016/0014-5793(88)80539-8. [DOI] [PubMed] [Google Scholar]
  14. Sandberg M., Natarajan V., Ronander I., Kalderon D., Walter U., Lohmann S. M., Jahnsen T. Molecular cloning and predicted full-length amino acid sequence of the type I beta isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes in rat. FEBS Lett. 1989 Sep 25;255(2):321–329. doi: 10.1016/0014-5793(89)81114-7. [DOI] [PubMed] [Google Scholar]
  15. Schrammel A., Behrends S., Schmidt K., Koesling D., Mayer B. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol. 1996 Jul;50(1):1–5. [PubMed] [Google Scholar]
  16. Stone J. R., Marletta M. A. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry. 1996 Jan 30;35(4):1093–1099. doi: 10.1021/bi9519718. [DOI] [PubMed] [Google Scholar]
  17. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  18. Wedel B., Harteneck C., Foerster J., Friebe A., Schultz G., Koesling D. Functional domains of soluble guanylyl cyclase. J Biol Chem. 1995 Oct 20;270(42):24871–24875. doi: 10.1074/jbc.270.42.24871. [DOI] [PubMed] [Google Scholar]
  19. Wedel B., Humbert P., Harteneck C., Foerster J., Malkewitz J., Böhme E., Schultz G., Koesling D. Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2592–2596. doi: 10.1073/pnas.91.7.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yuen P. S., Potter L. R., Garbers D. L. A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry. 1990 Dec 11;29(49):10872–10878. doi: 10.1021/bi00501a002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES