Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 15;335(Pt 2):217–224. doi: 10.1042/bj3350217

Purification and characterization of autophagosomes from rat hepatocytes.

P E Strømhaug 1, T O Berg 1, M Fengsrud 1, P O Seglen 1
PMCID: PMC1219772  PMID: 9761717

Abstract

To investigate the properties and intracellular origin of autophagosomes, a procedure for the purification and isolation of these organelles from rat liver has been developed. Isolated hepatocytes were incubated with vinblastine to induce autophagosome accumulation; the cells were then homogenized and treated with the cathepsin C substrate glycyl-l-phenylalanine 2-naphthylamide to cause osmotic disruption of the lysosomes. Nuclei were removed by differential centrifugation, and the postnuclear supernatant was fractionated on a discontinuous Nycodenz density gradient. The autophagosomes, recognized by their content of autophagocytosed lactate dehydrogenase (LDH), could be recovered in an intermediate-density fraction, free from cytosol and mitochondria. Finally, the autophagosomes were separated from the endoplasmic reticulum and other membranous elements by centrifugation in a Percoll colloidal density gradient, followed by flotation in iodixanol to remove the Percoll particles. The final autophagosome preparation represented a 24-fold purification of autophagocytosed LDH relative to intact cells, with a 12% recovery. The purified autophagosomes contained sequestered cytoplasm with a normal ultrastructure, including mitochondria, peroxisomes and endoplasmic reticulum in the same proportions as in intact cells. However, immunoblotting indicated a relative absence of cytoskeletal elements (tubulin, actin and cytokeratin), which may evade autophagic sequestration. The autophagosomes showed no enrichment in protein markers typical of lysosomes (acid phosphatase, cathepsin B, lysosomal glycoprotein of 120 kDa), endosomes (early-endosome-associated protein 1, cation-independent mannose 6-phosphate receptor, asialoglycoprotein receptor) or endoplasmic reticulum (esterase, glucose-regulated protein of 78 kDa, protein disulphide isomerase), suggesting that the sequestering membranes are not derived directly from any of these organelles, but rather represent unique organelles (phagophores).

Full Text

The Full Text of this article is available as a PDF (758.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba M., Osumi M., Ohsumi Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct Funct. 1995 Dec;20(6):465–471. doi: 10.1247/csf.20.465. [DOI] [PubMed] [Google Scholar]
  2. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg T. O., Fengsrud M., Strømhaug P. E., Berg T., Seglen P. O. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem. 1998 Aug 21;273(34):21883–21892. doi: 10.1074/jbc.273.34.21883. [DOI] [PubMed] [Google Scholar]
  4. Berg T. O., Strømhaug P. E., Berg T., Seglen P. O. Separation of lysosomes and autophagosomes by means of glycyl-phenylalanine-naphthylamide, a lysosome-disrupting cathepsin-C substrate. Eur J Biochem. 1994 Apr 1;221(1):595–602. doi: 10.1111/j.1432-1033.1994.tb18771.x. [DOI] [PubMed] [Google Scholar]
  5. Blankson H., Holen I., Seglen P. O. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res. 1995 Jun;218(2):522–530. doi: 10.1006/excr.1995.1187. [DOI] [PubMed] [Google Scholar]
  6. Bloom G. S., Brashear T. A. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem. 1989 Sep 25;264(27):16083–16092. [PubMed] [Google Scholar]
  7. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  8. Dunn W. A., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. doi: 10.1083/jcb.110.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ericsson J. L. Studies on induced cellular autophagy. II. Characterization of the membranes bordering autophagosomes in parenchymal liver cells. Exp Cell Res. 1969 Aug;56(2):393–405. doi: 10.1016/0014-4827(69)90030-5. [DOI] [PubMed] [Google Scholar]
  10. Fellinger E., Réz G. Isolation of pancreatic autophagic vacuoles induced by vinblastine or neutral red. Separation of autophagosomes and autolysosomes by Percoll density gradient centrifugation. Eur J Cell Biol. 1990 Apr;51(2):220–228. [PubMed] [Google Scholar]
  11. Fengsrud M., Roos N., Berg T., Liou W., Slot J. W., Seglen P. O. Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res. 1995 Dec;221(2):504–519. doi: 10.1006/excr.1995.1402. [DOI] [PubMed] [Google Scholar]
  12. Furuno K., Ishikawa T., Akasaki K., Lee S., Nishimura Y., Tsuji H., Himeno M., Kato K. Immunocytochemical study of the surrounding envelope of autophagic vacuoles in cultured rat hepatocytes. Exp Cell Res. 1990 Aug;189(2):261–268. doi: 10.1016/0014-4827(90)90245-6. [DOI] [PubMed] [Google Scholar]
  13. Furuno K., Ishikawa T., Kato K. Isolation and characterization of autolysosomes which appeared in rat liver after leupeptin treatment. J Biochem. 1982 Jun;91(6):1943–1950. doi: 10.1093/oxfordjournals.jbchem.a133888. [DOI] [PubMed] [Google Scholar]
  14. Gordon P. B., Holen I., Fosse M., Røtnes J. S., Seglen P. O. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem. 1993 Dec 15;268(35):26107–26112. [PubMed] [Google Scholar]
  15. Gordon P. B., Seglen P. O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Exp Cell Res. 1982 Nov;142(1):1–14. doi: 10.1016/0014-4827(82)90402-5. [DOI] [PubMed] [Google Scholar]
  16. Gordon P. B., Seglen P. O. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988 Feb 29;151(1):40–47. doi: 10.1016/0006-291x(88)90556-6. [DOI] [PubMed] [Google Scholar]
  17. Gray R. H., Sokol M., Brabec R. K., Brabec M. J. Characterization of chloroquine-induced autophagic vacuoles isolated from rat liver. Exp Mol Pathol. 1981 Feb;34(1):72–86. doi: 10.1016/0014-4800(81)90037-x. [DOI] [PubMed] [Google Scholar]
  18. Holen I., Gordon P. B., Seglen P. O. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur J Biochem. 1993 Jul 1;215(1):113–122. doi: 10.1111/j.1432-1033.1993.tb18013.x. [DOI] [PubMed] [Google Scholar]
  19. Holen I., Gordon P. B., Seglen P. O. Role of cyclic nucleotides in the control of hepatic autophagy. Biomed Biochim Acta. 1991;50(4-6):389–392. [PubMed] [Google Scholar]
  20. Holen I., Gordon P. B., Strømhaug P. E., Berg T. O., Fengsrud M., Brech A., Roos N., Berg T., Seglen P. O. Inhibition of asialoglycoprotein endocytosis and degradation in rat hepatocytes by protein phosphatase inhibitors. Biochem J. 1995 Oct 1;311(Pt 1):317–326. doi: 10.1042/bj3110317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holen I., Strømhaug P. E., Gordon P. B., Fengsrud M., Berg T. O., Seglen P. O. Inhibition of autophagy and multiple steps in asialoglycoprotein endocytosis by inhibitors of tyrosine protein kinases (tyrphostins). J Biol Chem. 1995 May 26;270(21):12823–12831. doi: 10.1074/jbc.270.21.12823. [DOI] [PubMed] [Google Scholar]
  22. Jadot M., Colmant C., Wattiaux-De Coninck S., Wattiaux R. Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-naphthylamide. Biochem J. 1984 May 1;219(3):965–970. doi: 10.1042/bj2190965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kopitz J., Kisen G. O., Gordon P. B., Bohley P., Seglen P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990 Sep;111(3):941–953. doi: 10.1083/jcb.111.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kovács A. L., Grinde B., Seglen P. O. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res. 1981 Jun;133(2):431–436. doi: 10.1016/0014-4827(81)90336-0. [DOI] [PubMed] [Google Scholar]
  25. Kovács A. L., Reith A., Seglen P. O. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res. 1982 Jan;137(1):191–201. doi: 10.1016/0014-4827(82)90020-9. [DOI] [PubMed] [Google Scholar]
  26. Mandel R., Ryser H. J., Ghani F., Wu M., Peak D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4112–4116. doi: 10.1073/pnas.90.9.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marzella L., Ahlberg J., Glaumann H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol. 1982 Apr;93(1):144–154. doi: 10.1083/jcb.93.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mu F. T., Callaghan J. M., Steele-Mortimer O., Stenmark H., Parton R. G., Campbell P. L., McCluskey J., Yeo J. P., Tock E. P., Toh B. H. EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine "fingers" and contains a calmodulin-binding IQ motif. J Biol Chem. 1995 Jun 2;270(22):13503–13511. doi: 10.1074/jbc.270.22.13503. [DOI] [PubMed] [Google Scholar]
  29. Ogier-Denis E., Couvineau A., Maoret J. J., Houri J. J., Bauvy C., De Stefanis D., Isidoro C., Laburthe M., Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem. 1995 Jan 6;270(1):13–16. doi: 10.1074/jbc.270.1.13. [DOI] [PubMed] [Google Scholar]
  30. Punnonen E. L., Pihakaski K., Mattila K., Lounatmaa K., Hirsimäki P. Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver. Cell Tissue Res. 1989 Nov;258(2):269–276. doi: 10.1007/BF00239447. [DOI] [PubMed] [Google Scholar]
  31. Purhonen P., Pursiainen K., Reunanen H. Effects of brefeldin A on autophagy in cultured rat fibroblasts. Eur J Cell Biol. 1997 Sep;74(1):63–67. [PubMed] [Google Scholar]
  32. Rabouille C., Strous G. J., Crapo J. D., Geuze H. J., Slot J. W. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol. 1993 Feb;120(4):897–908. doi: 10.1083/jcb.120.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reunanen H., Punnonen E. L., Hirsimäki P. Studies on vinblastine-induced autophagocytosis in mouse liver. V. A cytochemical study on the origin of membranes. Histochemistry. 1985;83(6):513–517. doi: 10.1007/BF00492453. [DOI] [PubMed] [Google Scholar]
  34. Seglen P. O., Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia. 1992 Feb 15;48(2):158–172. doi: 10.1007/BF01923509. [DOI] [PubMed] [Google Scholar]
  35. Seglen P. O., Gordon P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. doi: 10.1073/pnas.79.6.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  37. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  38. Strømhaug P. E., Berg T. O., Berg K., Seglen P. O. A novel method for the study of autophagy: destruction of hepatocytic lysosomes, but not autophagosomes, by the photosensitizing porphyrin tetra(4-sulphonatophenyl)porphine. Biochem J. 1997 Jan 1;321(Pt 1):217–225. doi: 10.1042/bj3210217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strømhaug P. E., Seglen P. O. Evidence for acidity of prelysosomal autophagic/endocytic vacuoles (amphisomes). Biochem J. 1993 Apr 1;291(Pt 1):115–121. doi: 10.1042/bj2910115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ueno T., Muno D., Kominami E. Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem. 1991 Oct 5;266(28):18995–18999. [PubMed] [Google Scholar]
  41. Weigel P. H., Oka J. A. Recycling of the hepatic asialoglycoprotein receptor in isolated rat hepatocytes. Receptor-ligand complexes in an intracellular slowly dissociating pool return to the cell surface prior to dissociation. J Biol Chem. 1984 Jan 25;259(2):1150–1154. [PubMed] [Google Scholar]
  42. Yamamoto A., Masaki R., Fukui Y., Tashiro Y. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes. J Histochem Cytochem. 1990 Nov;38(11):1571–1581. doi: 10.1177/38.11.2212617. [DOI] [PubMed] [Google Scholar]
  43. Yuan W., Tuttle D. L., Shi Y. J., Ralph G. S., Dunn W. A., Jr Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci. 1997 Aug;110(Pt 16):1935–1945. doi: 10.1242/jcs.110.16.1935. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES