Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 15;335(Pt 2):233–240. doi: 10.1042/bj3350233

Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.

T Simandan 1, J Sun 1, T A Dix 1
PMCID: PMC1219774  PMID: 9761719

Abstract

DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems.

Full Text

The Full Text of this article is available as a PDF (524.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikens J., Dix T. A. Effect of solution ionic strength on lipid peroxidation initiation by the perhydroxyl (xanthine oxidase-derived) and peroxyl radicals. Chem Res Toxicol. 1992 Mar-Apr;5(2):263–267. doi: 10.1021/tx00026a018. [DOI] [PubMed] [Google Scholar]
  2. Aikens J., Dix T. A. Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies. Arch Biochem Biophys. 1993 Sep;305(2):516–525. doi: 10.1006/abbi.1993.1455. [DOI] [PubMed] [Google Scholar]
  3. Aikens J., Dix T. A. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem. 1991 Aug 15;266(23):15091–15098. [PubMed] [Google Scholar]
  4. Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem. 1989 Dec 5;264(34):20509–20512. [PubMed] [Google Scholar]
  5. Blakely W. F., Fuciarelli A. F., Wegher B. J., Dizdaroglu M. Hydrogen peroxide-induced base damage in deoxyribonucleic acid. Radiat Res. 1990 Mar;121(3):338–343. [PubMed] [Google Scholar]
  6. Breen A. P., Murphy J. A. Reactions of oxyl radicals with DNA. Free Radic Biol Med. 1995 Jun;18(6):1033–1077. doi: 10.1016/0891-5849(94)00209-3. [DOI] [PubMed] [Google Scholar]
  7. CRAMER F., RANDERATH K., SCHAFER E. A. [The oxidation of adenosine derivatives to N1-oxides and the incorporation of ADP-N1-oxide in poly-A by crude bacterial extracts]. Biochim Biophys Acta. 1963 Jun 25;72:150–156. doi: 10.1016/0006-3002(63)90230-0. [DOI] [PubMed] [Google Scholar]
  8. Chang P. K. Synthesis of some hydroxylamine derivatives of pyrimidines and purines. J Med Chem. 1965 Nov;8(6):884–884. doi: 10.1021/jm00330a042. [DOI] [PubMed] [Google Scholar]
  9. Collins A., Cadet J., Epe B., Gedik C. Problems in the measurement of 8-oxoguanine in human DNA. Report of a workshop, DNA oxidation, held in Aberdeen, UK, 19-21 January, 1997. Carcinogenesis. 1997 Sep;18(9):1833–1836. doi: 10.1093/carcin/18.9.1833. [DOI] [PubMed] [Google Scholar]
  10. DELIA T. J., OLSEN M. J., BROWN G. B. CYTOSINE 3-N-OXIDE AND ITS REARRANGEMENT ON ACETYLATION. J Org Chem. 1965 Aug;30:2766–2768. doi: 10.1021/jo01019a062. [DOI] [PubMed] [Google Scholar]
  11. Dix T. A., Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol. 1993 Jan-Feb;6(1):2–18. doi: 10.1021/tx00031a001. [DOI] [PubMed] [Google Scholar]
  12. Dix T. A., Hess K. M., Medina M. A., Sullivan R. W., Tilly S. L., Webb T. L. Mechanism of site-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical. Biochemistry. 1996 Apr 9;35(14):4578–4583. doi: 10.1021/bi952010w. [DOI] [PubMed] [Google Scholar]
  13. Dizdaroglu M. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes. Anal Biochem. 1985 Feb 1;144(2):593–603. doi: 10.1016/0003-2697(85)90158-7. [DOI] [PubMed] [Google Scholar]
  14. Dizdaroglu M., Bergtold D. S. Characterization of free radical-induced base damage in DNA at biologically relevant levels. Anal Biochem. 1986 Jul;156(1):182–188. doi: 10.1016/0003-2697(86)90171-5. [DOI] [PubMed] [Google Scholar]
  15. Dizdaroglu M. Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med. 1991;10(3-4):225–242. doi: 10.1016/0891-5849(91)90080-m. [DOI] [PubMed] [Google Scholar]
  16. Dizdaroglu M. Gas chromatography-mass spectrometry of free radical-induced products of pyrimidines and purines in DNA. Methods Enzymol. 1990;193:842–857. doi: 10.1016/0076-6879(90)93454-s. [DOI] [PubMed] [Google Scholar]
  17. Dizdaroglu M. The use of capillary gas chromatography-mass spectrometry for identification of radiation-induced DNA base damage and DNA base-amino acid cross-links. J Chromatogr. 1984 Jul 6;295(1):103–121. doi: 10.1016/s0021-9673(01)87602-0. [DOI] [PubMed] [Google Scholar]
  18. Floyd R. A., Watson J. J., Wong P. K., Altmiller D. H., Rickard R. C. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun. 1986;1(3):163–172. doi: 10.3109/10715768609083148. [DOI] [PubMed] [Google Scholar]
  19. Giner Sorolla A., Medrek L., Bendich A. Synthesis and biological activity of 9-beta-D-ribofuranosyl-6-hydroxylaminopurine. J Med Chem. 1966 Jan;9(1):143–144. doi: 10.1021/jm00319a035. [DOI] [PubMed] [Google Scholar]
  20. Harkin L. A., Burcham P. C. Formation of novel C1-oxidised abasic sites in alkylperoxyl radical-damaged plasmid DNA. Biochem Biophys Res Commun. 1997 Aug 8;237(1):1–5. doi: 10.1006/bbrc.1997.7065. [DOI] [PubMed] [Google Scholar]
  21. Harkin L. A., Butler L. M., Burcham P. C. Role of G-->T transversions in the mutagenicity of alkylperoxyl radicals: induction of alkali-labile sites in bacteriophage M13mp19. Chem Res Toxicol. 1997 May;10(5):575–581. doi: 10.1021/tx9602022. [DOI] [PubMed] [Google Scholar]
  22. Hazlewood C., Davies M. J. Benzoyl peroxide-induced damage to DNA and its components: direct evidence for the generation of base adducts, sugar radicals, and strand breaks. Arch Biochem Biophys. 1996 Aug 1;332(1):79–91. doi: 10.1006/abbi.1996.0319. [DOI] [PubMed] [Google Scholar]
  23. Hruszkewycz A. M., Bergtold D. S. The 8-hydroxyguanine content of isolated mitochondria increases with lipid peroxidation. Mutat Res. 1990 Jun;244(2):123–128. doi: 10.1016/0165-7992(90)90060-w. [DOI] [PubMed] [Google Scholar]
  24. Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol. 1985;32:115–154. doi: 10.1016/s0079-6603(08)60347-5. [DOI] [PubMed] [Google Scholar]
  25. Inouye S. Site-specific cleavage of double-strand DNA by hydroperoxide of linoleic acid. FEBS Lett. 1984 Jul 9;172(2):231–234. doi: 10.1016/0014-5793(84)81131-x. [DOI] [PubMed] [Google Scholar]
  26. Lustig M. J., Cadet J., Boorstein R. J., Teebor G. W. Synthesis of the diastereomers of thymidine glycol, determination of concentrations and rates of interconversion of their cis-trans epimers at equilibrium and demonstration of differential alkali lability within DNA. Nucleic Acids Res. 1992 Sep 25;20(18):4839–4845. doi: 10.1093/nar/20.18.4839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marnett L. J., Burcham P. C. Endogenous DNA adducts: potential and paradox. Chem Res Toxicol. 1993 Nov-Dec;6(6):771–785. doi: 10.1021/tx00036a005. [DOI] [PubMed] [Google Scholar]
  28. Marnett L. J. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis. 1987 Oct;8(10):1365–1373. doi: 10.1093/carcin/8.10.1365. [DOI] [PubMed] [Google Scholar]
  29. Martini M., Termini J. Peroxy radical oxidation of thymidine. Chem Res Toxicol. 1997 Feb;10(2):234–241. doi: 10.1021/tx960154l. [DOI] [PubMed] [Google Scholar]
  30. Mouret J. F., Polverelli M., Sarrazini F., Cadet J. Ionic and radical oxidations of DNA by hydrogen peroxide. Chem Biol Interact. 1991;77(2):187–201. doi: 10.1016/0009-2797(91)90073-g. [DOI] [PubMed] [Google Scholar]
  31. Niki E. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–108. doi: 10.1016/0076-6879(90)86095-d. [DOI] [PubMed] [Google Scholar]
  32. Park J. W., Floyd R. A. Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic Biol Med. 1992;12(4):245–250. doi: 10.1016/0891-5849(92)90111-s. [DOI] [PubMed] [Google Scholar]
  33. Pryor W. A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. doi: 10.1146/annurev.ph.48.030186.003301. [DOI] [PubMed] [Google Scholar]
  34. Ravanat J. L., Turesky R. J., Gremaud E., Trudel L. J., Stadler R. H. Determination of 8-oxoguanine in DNA by gas chromatography--mass spectrometry and HPLC--electrochemical detection: overestimation of the background level of the oxidized base by the gas chromatography--mass spectrometry assay. Chem Res Toxicol. 1995 Dec;8(8):1039–1045. doi: 10.1021/tx00050a007. [DOI] [PubMed] [Google Scholar]
  35. Shigenaga M. K., Ames B. N. Assays for 8-hydroxy-2'-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Radic Biol Med. 1991;10(3-4):211–216. doi: 10.1016/0891-5849(91)90078-h. [DOI] [PubMed] [Google Scholar]
  36. Subbaraman L. R., Subbaraman J., Behrman E. J. The reaction of nucleic acid components with m-chloroperoxybenzoic acid. Biochemistry. 1969 Jul;8(7):3059–3066. doi: 10.1021/bi00835a055. [DOI] [PubMed] [Google Scholar]
  37. Teebor G. W., Boorstein R. J., Cadet J. The repairability of oxidative free radical mediated damage to DNA: a review. Int J Radiat Biol. 1988 Aug;54(2):131–150. doi: 10.1080/09553008814551591. [DOI] [PubMed] [Google Scholar]
  38. Téoule R. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Apr;51(4):573–589. doi: 10.1080/09553008414552111. [DOI] [PubMed] [Google Scholar]
  39. Ueda K., Kobayashi S., Morita J., Komano T. Site-specific DNA damage caused by lipid peroxidation products. Biochim Biophys Acta. 1985 Apr 19;824(4):341–348. doi: 10.1016/0167-4781(85)90041-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES