Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 15;335(Pt 2):305–311. doi: 10.1042/bj3350305

Characterization of the hypertonically induced tyrosine phosphorylation of erythrocyte band 3.

G Minetti 1, C Seppi 1, A Ciana 1, C Balduini 1, P S Low 1, A Brovelli 1
PMCID: PMC1219783  PMID: 9761728

Abstract

Human erythrocyte band 3 becomes rapidly phosphorylated on tyrosine residues after exposure of erythrocytes to hypertonic conditions. The driving force for this phosphorylation reaction seems to be a decrease in cell volume, because (1) changes in band 3 phosphotyrosine content accurately track repeated changes in erythrocyte volume through several cycles of swelling and shrinking; (2) the level of band 3 phosphorylation is independent of the osmolyte employed but strongly sensitive to the magnitude of cell shrinkage; and (3) exposure of erythrocytes to hypertonic buffers under conditions in which intracellular osmolarity increases but volume does not change (nystatin-treated cells) does not promote an increase in tyrosine phosphorylation. We hypothesize that shrinkage-induced tyrosine phosphorylation results either from an excluded-volume effect, stemming from an increase in intracellular crowding, or from changes in membrane curvature that accompany the decrease in cell volume. Although the net phosphorylation state of band 3 is shown to be due to a delicate balance between a constitutively active tyrosine phosphatase and constitutively active tyrosine kinase, the increase in phosphorylation during cell shrinkage was demonstrated to derive specifically from an activation of the latter. Further, a peculiar inhibition pattern of the volume-sensitive erythrocyte tyrosine kinase that matched that of p72syk, a tyrosine kinase already known to associate with band 3 in vivo, suggested the involvement of this kinase in the volume-dependent response.

Full Text

The Full Text of this article is available as a PDF (377.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrabin H., Garrahan P. J., Rega A. F. Vanadate inhibition of the Ca2+-ATPase from human red cell membranes. Biochim Biophys Acta. 1980 Aug 14;600(3):796–804. doi: 10.1016/0005-2736(80)90482-4. [DOI] [PubMed] [Google Scholar]
  2. Bordin L., Clari G., Baggio B., Moret V. Tyrosine-protein kinase inhibition in human erythrocytes by polyphosphoinositides (PIP and PIP2). Biochem Biophys Res Commun. 1992 Sep 16;187(2):853–858. doi: 10.1016/0006-291x(92)91275-u. [DOI] [PubMed] [Google Scholar]
  3. Bordin L., Clari G., Moro I., Dalla Vecchia F., Moret V. Functional link between phosphorylation state of membrane proteins and morphological changes of human erythrocytes. Biochem Biophys Res Commun. 1995 Aug 4;213(1):249–257. doi: 10.1006/bbrc.1995.2123. [DOI] [PubMed] [Google Scholar]
  4. Brunati A. M., Bordin L., Clari G., Moret V. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band-3 protein of human erythrocytes. Eur J Biochem. 1996 Sep 1;240(2):394–399. doi: 10.1111/j.1432-1033.1996.0394h.x. [DOI] [PubMed] [Google Scholar]
  5. Clari G., Bordin L., Marzaro G., Moret V. Effect of intracellular pH changes on the distribution of tyrosine- and serine/threonine-protein kinase activities in human erythrocytes. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1021–1027. doi: 10.1016/0006-291x(91)90994-i. [DOI] [PubMed] [Google Scholar]
  6. Clari G., Moret V. Phosphorylation of membrane proteins by cytosolic casein kinases in human erythrocytes. Effect of monovalent ions, 2,3-bisphosphoglycerate and spermine. Mol Cell Biochem. 1985 Oct;68(2):181–187. doi: 10.1007/BF00219382. [DOI] [PubMed] [Google Scholar]
  7. Clark M. R., Guatelli J. C., White A. T., Shohet S. B. Study on the dehydrating effect of the red cell Na+/K+-pump in nystatin-treated cells with varying Na+ and water contents. Biochim Biophys Acta. 1981 Sep 7;646(3):422–432. doi: 10.1016/0005-2736(81)90311-4. [DOI] [PubMed] [Google Scholar]
  8. Dekowski S. A., Rybicki A., Drickamer K. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J Biol Chem. 1983 Mar 10;258(5):2750–2753. [PubMed] [Google Scholar]
  9. Guttman H. J., Anderson C. F., Record M. T., Jr Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo. Biophys J. 1995 Mar;68(3):835–846. doi: 10.1016/S0006-3495(95)80260-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harrison M. L., Isaacson C. C., Burg D. L., Geahlen R. L., Low P. S. Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J Biol Chem. 1994 Jan 14;269(2):955–959. [PubMed] [Google Scholar]
  11. Harrison M. L., Rathinavelu P., Arese P., Geahlen R. L., Low P. S. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem. 1991 Mar 5;266(7):4106–4111. [PubMed] [Google Scholar]
  12. Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997 Jan 10;272(2):843–851. doi: 10.1074/jbc.272.2.843. [DOI] [PubMed] [Google Scholar]
  13. Isakov N., Wange R. L., Watts J. D., Aebersold R., Samelson L. E. Purification and characterization of human ZAP-70 protein-tyrosine kinase from a baculovirus expression system. J Biol Chem. 1996 Jun 28;271(26):15753–15761. doi: 10.1074/jbc.271.26.15753. [DOI] [PubMed] [Google Scholar]
  14. Krump E., Nikitas K., Grinstein S. Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem. 1997 Jul 11;272(28):17303–17311. doi: 10.1074/jbc.272.28.17303. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Latour S., Chow L. M., Veillette A. Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J Biol Chem. 1996 Sep 13;271(37):22782–22790. doi: 10.1074/jbc.271.37.22782. [DOI] [PubMed] [Google Scholar]
  17. Low P. S., Allen D. P., Zioncheck T. F., Chari P., Willardson B. M., Geahlen R. L., Harrison M. L. Tyrosine phosphorylation of band 3 inhibits peripheral protein binding. J Biol Chem. 1987 Apr 5;262(10):4592–4596. [PubMed] [Google Scholar]
  18. Low P. S., Rathinavelu P., Harrison M. L. Regulation of glycolysis via reversible enzyme binding to the membrane protein, band 3. J Biol Chem. 1993 Jul 15;268(20):14627–14631. [PubMed] [Google Scholar]
  19. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  20. Minetti G., Piccinini G., Balduini C., Seppi C., Brovelli A. Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes. Biochem J. 1996 Dec 1;320(Pt 2):445–450. doi: 10.1042/bj3200445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miwa I., Fukatsu H., Okuda J. Effect of mild oxidants on glycolysis in human erythrocytes. Biochem J. 1992 Apr 15;283(Pt 2):621–622. doi: 10.1042/bj2830621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mohamed A. H., Steck T. L. Band 3 tyrosine kinase. Association with the human erythrocyte membrane. J Biol Chem. 1986 Feb 25;261(6):2804–2809. [PubMed] [Google Scholar]
  23. Peters J. D., Furlong M. T., Asai D. J., Harrison M. L., Geahlen R. L. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem. 1996 Mar 1;271(9):4755–4762. doi: 10.1074/jbc.271.9.4755. [DOI] [PubMed] [Google Scholar]
  24. Phan-Dinh-Tuy F., Henry J., Kahn A. Characterization of human red blood cell tyrosine kinase. Biochem Biophys Res Commun. 1985 Jan 16;126(1):304–312. doi: 10.1016/0006-291x(85)90606-0. [DOI] [PubMed] [Google Scholar]
  25. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  26. Schieven G. L., Kirihara J. M., Burg D. L., Geahlen R. L., Ledbetter J. A. p72syk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Ca2+ signals. J Biol Chem. 1993 Aug 5;268(22):16688–16692. [PubMed] [Google Scholar]
  27. Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Subrahmanyam G., Bertics P. J., Anderson R. A. Phosphorylation of protein 4.1 on tyrosine-418 modulates its function in vitro. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5222–5226. doi: 10.1073/pnas.88.12.5222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang C. C., Badylak J. A., Lux S. E., Moriyama R., Dixon J. E., Low P. S. Expression, purification, and characterization of the functional dimeric cytoplasmic domain of human erythrocyte band 3 in Escherichia coli. Protein Sci. 1992 Sep;1(9):1206–1214. doi: 10.1002/pro.5560010913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yannoukakos D., Meyer H. E., Vasseur C., Driancourt C., Wajcman H., Bursaux E. Three regions of erythrocyte band 3 protein are phosphorylated on tyrosines: characterization of the phosphorylation sites by solid phase sequencing combined with capillary electrophoresis. Biochim Biophys Acta. 1991 Jul 1;1066(1):70–76. doi: 10.1016/0005-2736(91)90252-4. [DOI] [PubMed] [Google Scholar]
  32. Yannoukakos D., Vasseur C., Piau J. P., Wajcman H., Bursaux E. Phosphorylation sites in human erythrocyte band 3 protein. Biochim Biophys Acta. 1991 Jan 30;1061(2):253–266. doi: 10.1016/0005-2736(91)90291-f. [DOI] [PubMed] [Google Scholar]
  33. Zipser Y., Kosower N. S. Phosphotyrosine phosphatase associated with band 3 protein in the human erythrocyte membrane. Biochem J. 1996 Mar 15;314(Pt 3):881–887. doi: 10.1042/bj3140881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zipser Y., Piade A., Kosower N. S. Erythrocyte thiol status regulates band 3 phosphotyrosine level via oxidation/reduction of band 3-associated phosphotyrosine phosphatase. FEBS Lett. 1997 Apr 7;406(1-2):126–130. doi: 10.1016/s0014-5793(97)00263-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES