Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Oct 15;335(Pt 2):319–327. doi: 10.1042/bj3350319

Evidence for a major structural change in Escherichia coli chorismate synthase induced by flavin and substrate binding.

P Macheroux 1, E Schönbrunn 1, D I Svergun 1, V V Volkov 1, M H Koch 1, S Bornemann 1, R N Thorneley 1
PMCID: PMC1219785  PMID: 9761730

Abstract

Chorismate synthase (EC 4.6.1.4) catalyses the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) into chorismate, and requires reduced FMN as a cofactor. The enzyme can bind first oxidized FMN and then EPSP to form a stable ternary complex which does not undergo turnover. This complex can be considered to be a model of the ternary complex between enzyme, EPSP and reduced FMN immediately before catalysis commences. It is shown that the binding of oxidized FMN and EPSP to chorismate synthase affects the properties and structure of the protein. Changes in small-angle X-ray scattering data, decreased susceptibility to tryptic digestion and altered Fourier-transform (FT)-IR spectra provide the first strong evidence for major structural changes in the protein. The tetrameric enzyme undergoes correlated screw movements leading to a more overall compact shape, with no change in oligomerization state. The changes in the FT-IR spectrum appear to reflect changes in the environment of the secondary-structural elements rather than alterations in their distribution, because the far-UV CD spectrum changes very little. Changes in the mobility of the protein during non-denaturing PAGE indicate that the ternary complex may exhibit less conformational flexibility than the apoprotein. Increased enzyme solubility and decreased tryptophan fluorescence are discussed in the light of the observed structural changes. The secondary structure of the enzyme was investigated using far-UV CD spectroscopy, and the tertiary structure was predicted to be an alpha-beta-barrel using discrete state-space modelling.

Full Text

The Full Text of this article is available as a PDF (697.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornemann S., Balasubramanian S., Coggins J. R., Abell C., Lowe D. J., Thorneley R. N. Escherichia coli chorismate synthase: a deuterium kinetic-isotope effect under single-turnover and steady-state conditions shows that a flavin intermediate forms before the C-(6proR)-H bond is cleaved. Biochem J. 1995 Feb 1;305(Pt 3):707–710. doi: 10.1042/bj3050707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornemann S., Lowe D. J., Thorneley R. N. Escherichia coli chorismate synthase. Biochem Soc Trans. 1996 Feb;24(1):84–88. doi: 10.1042/bst0240084. [DOI] [PubMed] [Google Scholar]
  3. Bornemann S., Lowe D. J., Thorneley R. N. The transient kinetics of Escherichia coli chorismate synthase: substrate consumption, product formation, phosphate dissociation, and characterization of a flavin intermediate. Biochemistry. 1996 Jul 30;35(30):9907–9916. doi: 10.1021/bi952958q. [DOI] [PubMed] [Google Scholar]
  4. Bornemann S., Ramjee M. K., Balasubramanian S., Abell C., Coggins J. R., Lowe D. J., Thorneley R. N. Escherichia coli chorismate synthase catalyzes the conversion of (6S)-6-fluoro-5-enolpyruvylshikimate-3-phosphate to 6-fluorochorismate. Implications for the enzyme mechanism and the antimicrobial action of (6S)-6-fluoroshikimate. J Biol Chem. 1995 Sep 29;270(39):22811–22815. doi: 10.1074/jbc.270.39.22811. [DOI] [PubMed] [Google Scholar]
  5. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  6. Burnett R. M., Darling G. D., Kendall D. S., LeQuesne M. E., Mayhew S. G., Smith W. W., Ludwig M. L. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. J Biol Chem. 1974 Jul 25;249(14):4383–4392. [PubMed] [Google Scholar]
  7. Charles I. G., Lamb H. K., Pickard D., Dougan G., Hawkins A. R. Isolation, characterization and nucleotide sequences of the aroC genes encoding chorismate synthase from Salmonella typhi and Escherichia coli. J Gen Microbiol. 1990 Feb;136(2):353–358. doi: 10.1099/00221287-136-2-353. [DOI] [PubMed] [Google Scholar]
  8. Dyda F., Furey W., Swaminathan S., Sax M., Farrenkopf B., Jordan F. Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-A resolution. Biochemistry. 1993 Jun 22;32(24):6165–6170. doi: 10.1021/bi00075a008. [DOI] [PubMed] [Google Scholar]
  9. Edmondson D. E., Tollin G. Chemical and physical characterization of the Shethna flavoprotein and apoprotein and kinetics and thermodynamics of flavin analog binding to the apoprotein. Biochemistry. 1971 Jan 5;10(1):124–132. doi: 10.1021/bi00777a019. [DOI] [PubMed] [Google Scholar]
  10. Edmondson D. E., Tollin G. Circular dichroism studies of the flavin chromophore and of the relation between redox properties and flavin environment in oxidases and dehydrogenases. Biochemistry. 1971 Jan 5;10(1):113–124. doi: 10.1021/bi00777a018. [DOI] [PubMed] [Google Scholar]
  11. Floss H. G., Onderka D. K., Carroll M. Stereochemistry of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase reaction and the chorismate synthetase reaction. J Biol Chem. 1972 Feb 10;247(3):736–744. [PubMed] [Google Scholar]
  12. Henstrand J. M., Amrhein N., Schmid J. Cloning and characterization of a heterologously expressed bifunctional chorismate synthase/flavin reductase from Neurospora crassa. J Biol Chem. 1995 Sep 1;270(35):20447–20452. doi: 10.1074/jbc.270.35.20447. [DOI] [PubMed] [Google Scholar]
  13. Hesp B., Calvin M., Hosokawa K. Studies on p-hydroxybenzoate hydroxylase from Pseudomonas putida. J Biol Chem. 1969 Oct 25;244(20):5644–5655. [PubMed] [Google Scholar]
  14. Hill R. K., Newkome G. R. Stereochemistry of chorismic acid biosynthesis. J Am Chem Soc. 1969 Oct 8;91(21):5893–5894. doi: 10.1021/ja01049a045. [DOI] [PubMed] [Google Scholar]
  15. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  16. König S., Svergun D., Koch M. H., Hübner G., Schellenberger A. Synchrotron radiation solution X-ray scattering study of the pH dependence of the quaternary structure of yeast pyruvate decarboxylase. Biochemistry. 1992 Sep 22;31(37):8726–8731. doi: 10.1021/bi00152a007. [DOI] [PubMed] [Google Scholar]
  17. König S., Svergun D., Koch M. H., Hübner G., Schellenberger A. The influence of the effectors of yeast pyruvate decarboxylase (PDC) on the conformation of the dimers and tetramers and their pH-dependent equilibrium. Eur Biophys J. 1993;22(3):185–194. doi: 10.1007/BF00185779. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lauhon C. T., Bartlett P. A. Substrate analogs as mechanistic probes for the bifunctional chorismate synthase from Neurospora crassa. Biochemistry. 1994 Nov 29;33(47):14100–14108. doi: 10.1021/bi00251a019. [DOI] [PubMed] [Google Scholar]
  20. Macheroux P., Bornemann S., Ghisla S., Thorneley R. N. Studies with flavin analogs provide evidence that a protonated reduced FMN is the substrate-induced transient intermediate in the reaction of Escherichia coli chorismate synthase. J Biol Chem. 1996 Oct 18;271(42):25850–25858. doi: 10.1074/jbc.271.42.25850. [DOI] [PubMed] [Google Scholar]
  21. Macheroux P., Petersen J., Bornemann S., Lowe D. J., Thorneley R. N. Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry. 1996 Feb 6;35(5):1643–1652. doi: 10.1021/bi951705u. [DOI] [PubMed] [Google Scholar]
  22. Mattevi A., Valentini G., Rizzi M., Speranza M. L., Bolognesi M., Coda A. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Structure. 1995 Jul 15;3(7):729–741. doi: 10.1016/s0969-2126(01)00207-6. [DOI] [PubMed] [Google Scholar]
  23. Morell H., Clark M. J., Knowles P. F., Sprinson D. B. The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. J Biol Chem. 1967 Jan 10;242(1):82–90. [PubMed] [Google Scholar]
  24. Onderka D. K., Floss H. G. Steric course of the chorismate synthetase reaction and the 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase reaction. J Am Chem Soc. 1969 Oct 8;91(21):5894–5896. doi: 10.1021/ja01049a046. [DOI] [PubMed] [Google Scholar]
  25. Roberts F., Roberts C. W., Johnson J. J., Kyle D. E., Krell T., Coggins J. R., Coombs G. H., Milhous W. K., Tzipori S., Ferguson D. J. Evidence for the shikimate pathway in apicomplexan parasites. Nature. 1998 Jun 25;393(6687):801–805. doi: 10.1038/31723. [DOI] [PubMed] [Google Scholar]
  26. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  27. Stultz C. M., White J. V., Smith T. F. Structural analysis based on state-space modeling. Protein Sci. 1993 Mar;2(3):305–314. doi: 10.1002/pro.5560020302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tollin G. Magnetic circular dichroism and circular dichroism of riboflavin and its analogs. Biochemistry. 1968 May;7(5):1720–1727. doi: 10.1021/bi00845a015. [DOI] [PubMed] [Google Scholar]
  29. Tomb J. F., White O., Kerlavage A. R., Clayton R. A., Sutton G. G., Fleischmann R. D., Ketchum K. A., Klenk H. P., Gill S., Dougherty B. A. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  30. Wantyghem J., Baron M. H., Picquart M., Lavialle F. Conformational changes of Robinia pseudoacacia lectin related to modifications of the environment: FTIR investigation. Biochemistry. 1990 Jul 17;29(28):6600–6609. doi: 10.1021/bi00480a008. [DOI] [PubMed] [Google Scholar]
  31. Welch G. R., Cole K. W., Gaertner F. H. Chorismate synthase of Neurospora crassa: a flavoprotein. Arch Biochem Biophys. 1974 Dec;165(2):505–518. doi: 10.1016/0003-9861(74)90276-8. [DOI] [PubMed] [Google Scholar]
  32. White J. V., Stultz C. M., Smith T. F. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math Biosci. 1994 Jan;119(1):35–75. doi: 10.1016/0025-5564(94)90004-3. [DOI] [PubMed] [Google Scholar]
  33. White P. J., Millar G., Coggins J. R. The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J. 1988 Apr 15;251(2):313–322. doi: 10.1042/bj2510313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wierenga R. K., de Jong R. J., Kalk K. H., Hol W. G., Drenth J. Crystal structure of p-hydroxybenzoate hydroxylase. J Mol Biol. 1979 Jun 15;131(1):55–73. doi: 10.1016/0022-2836(79)90301-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES