Abstract
Mammalian cells become more susceptible to radiation-induced death and mutagenesis when restricted in their production of the natural polyamines putrescine, spermidine and spermine. The effects of polyamine deprivation are reversed by N-(2-mercaptoethyl)-1, 3-diaminopropane (WR1065), a simple aminothiol that has been extensively studied for its radioprotectant properties. Because this compound and its oxidized derivative WR33278 bear some resemblance to the polyamines, it was hypothesized that radioprotection by WR1065 or its metabolites is derived, at least in part, from their ability to supplement the natural polyamines. To evaluate the ability of these aminothiol compounds to emulate polyamine function in intact cells, rat liver hepatoma (HTC) cells were treated with radioprotective doses of WR1065; the ability of this compound to affect various aspects of normal polyamine metabolism was monitored. Although cellular WR1065 was maintained at levels exceeding those of the polyamines, this aminothiol did not have any polyamine-like effect on the initial polyamine biosynthetic enzyme, ornithine decarboxylase, or on polyamine degradative reactions. On the contrary, treatment with relatively low levels of WR1065 resulted in an unexpected increase in putrescine and spermidine synthesis. WR1065 treatment enhanced the stability, and consequently the activity, of ornithine decarboxylase. This stabilization seems to result from a WR1065-induced delay in the synthesis of antizyme, a critical regulatory protein required in the feedback modulation of polyamine synthesis and transport. The increase in cellular spermidine induced by WR1065 might explain its antimutagenic properties, but is probably not a factor in protection against cell killing by radiation. This is the first evidence that compounds can be designed to control polyamine levels by targeting the activity of the regulatory protein antizyme.
Full Text
The Full Text of this article is available as a PDF (356.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balasundaram D., Tabor C. W., Tabor H. Oxygen toxicity in a polyamine-depleted spe2 delta mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4693–4697. doi: 10.1073/pnas.90.10.4693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balasundaram D., Tyagi A. K. Polyamine--DNA nexus: structural ramifications and biological implications. Mol Cell Biochem. 1991 Feb 2;100(2):129–140. doi: 10.1007/BF00234162. [DOI] [PubMed] [Google Scholar]
- Braunlin W. H., Strick T. J., Record M. T., Jr Equilibrium dialysis studies of polyamine binding to DNA. Biopolymers. 1982 Jul;21(7):1301–1314. doi: 10.1002/bip.360210704. [DOI] [PubMed] [Google Scholar]
- Calabro-Jones P. M., Aguilera J. A., Ward J. F., Smoluk G. D., Fahey R. C. Uptake of WR-2721 derivatives by cells in culture: identification of the transported form of the drug. Cancer Res. 1988 Jul 1;48(13):3634–3640. [PubMed] [Google Scholar]
- Fong W. F., Heller J. S., Canellakis E. S. The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochim Biophys Acta. 1976 Apr 23;428(2):456–465. doi: 10.1016/0304-4165(76)90054-4. [DOI] [PubMed] [Google Scholar]
- Gaugas J. M. Possible association of radioprotective and chemoprotective aminophosphorothioate drug activity with polyamine oxidase susceptibility. J Natl Cancer Inst. 1982 Aug;69(2):329–332. [PubMed] [Google Scholar]
- Gerner E. W., Tome M. E., Fry S. E., Bowden G. T. Inhibition of ionizing radiation recovery processes in polyamine-depleted Chinese hamster cells. Cancer Res. 1988 Sep 1;48(17):4881–4885. [PubMed] [Google Scholar]
- Grdina D. J., Nagy B., Hill C. K., Wells R. L., Peraino C. The radioprotector WR1065 reduces radiation-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Carcinogenesis. 1985 Jun;6(6):929–931. doi: 10.1093/carcin/6.6.929. [DOI] [PubMed] [Google Scholar]
- Grdina D. J., Shigematsu N., Dale P., Newton G. L., Aguilera J. A., Fahey R. C. Thiol and disulfide metabolites of the radiation protector and potential chemopreventive agent WR-2721 are linked to both its anti-cytotoxic and anti-mutagenic mechanisms of action. Carcinogenesis. 1995 Apr;16(4):767–774. doi: 10.1093/carcin/16.4.767. [DOI] [PubMed] [Google Scholar]
- Grdina D. J., Sigdestad C. P. Radiation protectors: the unexpected benefits. Drug Metab Rev. 1989;20(1):13–42. doi: 10.3109/03602538908994143. [DOI] [PubMed] [Google Scholar]
- Hayashi S., Murakami Y., Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci. 1996 Jan;21(1):27–30. [PubMed] [Google Scholar]
- Hayashi S., Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J. 1995 Feb 15;306(Pt 1):1–10. doi: 10.1042/bj3060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Held K. D., Awad S. Effects of polyamines and thiols on the radiation sensitivity of bacterial transforming DNA. Int J Radiat Biol. 1991 Mar;59(3):699–710. doi: 10.1080/09553009114550611. [DOI] [PubMed] [Google Scholar]
- Henle K. J., Moss A. J., Nagle W. A. Mechanism of spermidine cytotoxicity at 37 degrees C and 43 degrees C in Chinese hamster ovary cells. Cancer Res. 1986 Jan;46(1):175–182. [PubMed] [Google Scholar]
- Hibasami H., Tanaka M., Nagai J., Ikeda T. Dicyclohexylamine, a potent inhibitor of spermidine synthase in mammalian cells. FEBS Lett. 1980 Jul 11;116(1):99–101. doi: 10.1016/0014-5793(80)80537-0. [DOI] [PubMed] [Google Scholar]
- Matsufuji S., Matsufuji T., Miyazaki Y., Murakami Y., Atkins J. F., Gesteland R. F., Hayashi S. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell. 1995 Jan 13;80(1):51–60. doi: 10.1016/0092-8674(95)90450-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meier T., Issels R. D. Degradation of 2-(3-aminopropylamino)-ethanethiol (WR-1065) by Cu-dependent amine oxidases and influence on glutathione status of Chinese hamster ovary cells. Biochem Pharmacol. 1995 Aug 8;50(4):489–496. doi: 10.1016/0006-2952(95)00164-u. [DOI] [PubMed] [Google Scholar]
- Mitchell J. L., Chen H. J. Conformational changes in ornithine decarboxylase enable recognition by antizyme. Biochim Biophys Acta. 1990 Jan 19;1037(1):115–121. doi: 10.1016/0167-4838(90)90109-s. [DOI] [PubMed] [Google Scholar]
- Mitchell J. L., Choe C. Y., Judd G. G. Feedback repression of ornithine decarboxylase synthesis mediated by antizyme. Biochem J. 1996 Dec 15;320(Pt 3):755–760. doi: 10.1042/bj3200755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. L., Diveley R. R., Jr, Bareyal-Leyser A. Feedback repression of polyamine uptake into mammalian cells requires active protein synthesis. Biochem Biophys Res Commun. 1992 Jul 15;186(1):81–88. doi: 10.1016/s0006-291x(05)80778-8. [DOI] [PubMed] [Google Scholar]
- Mitchell J. L., Diveley R. R., Jr, Bareyal-Leyser A., Mitchell J. L. Abnormal accumulation and toxicity of polyamines in a difluoromethylornithine-resistant HTC cell variant. Biochim Biophys Acta. 1992 Aug 12;1136(2):136–142. doi: 10.1016/0167-4889(92)90248-a. [DOI] [PubMed] [Google Scholar]
- Mitchell J. L., Judd G. G., Bareyal-Leyser A., Ling S. Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J. 1994 Apr 1;299(Pt 1):19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. L., Judd G. G., Diveley R. R., Jr, Choe C. Y., Leyser A. Involvement of the polyamine transport system in cellular uptake of the radioprotectants WR-1065 and WR-33278. Carcinogenesis. 1995 Dec;16(12):3063–3068. doi: 10.1093/carcin/16.12.3063. [DOI] [PubMed] [Google Scholar]
- Mitchell J. L., Judd G. G., Leyser A., Choe C. Osmotic stress induces variation in cellular levels of ornithine decarboxylase-antizyme. Biochem J. 1998 Feb 1;329(Pt 3):453–459. doi: 10.1042/bj3290453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. L., Mahan D. W., McCann P. P., Qasba P. Dicyclohexylamine effects on HTC cell polyamine content and ornithine decarboxylase activity. Biochim Biophys Acta. 1985 Jul 5;840(3):309–316. doi: 10.1016/0304-4165(85)90210-7. [DOI] [PubMed] [Google Scholar]
- Murakami Y., Hayashi S. Role of antizyme in degradation of ornithine decarboxylase in HTC cells. Biochem J. 1985 Mar 15;226(3):893–896. doi: 10.1042/bj2260893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami Y., Matsufuji S., Kameji T., Hayashi S., Igarashi K., Tamura T., Tanaka K., Ichihara A. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 1992 Dec 10;360(6404):597–599. doi: 10.1038/360597a0. [DOI] [PubMed] [Google Scholar]
- Murakami Y., Tanahashi N., Tanaka K., Omura S., Hayashi S. Proteasome pathway operates for the degradation of ornithine decarboxylase in intact cells. Biochem J. 1996 Jul 1;317(Pt 1):77–80. doi: 10.1042/bj3170077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Borchardt R. T., Coward J. K. Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts. Biochem J. 1981 Jan 15;194(1):79–89. doi: 10.1042/bj1940079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Shantz L. M., Coleman C. S. Ornithine decarboxylase: structure, function and translational regulation. Biochem Soc Trans. 1994 Nov;22(4):846–852. doi: 10.1042/bst0220846. [DOI] [PubMed] [Google Scholar]
- Prager A., Terry N. H., Murray D. Influence of intracellular thiol and polyamine levels on radioprotection by aminothiols. Int J Radiat Biol. 1993 Jul;64(1):71–81. doi: 10.1080/09553009314551121. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Ye C. P., Diaz R., Kifor O., Bai M., Vassilev P., Brown E. The Ca2+-sensing receptor: a target for polyamines. Am J Physiol. 1997 Oct;273(4 Pt 1):C1315–C1323. doi: 10.1152/ajpcell.1997.273.4.C1315. [DOI] [PubMed] [Google Scholar]
- Shaw L. M., Bonner H. S., Brown D. Q. Metabolic pathways of WR-2721 (ethyol, amifostine) in the BALB/c mouse. Drug Metab Dispos. 1994 Nov-Dec;22(6):895–902. [PubMed] [Google Scholar]
- Shigematsu N., Schwartz J. L., Grdina D. J. Protection against radiation-induced mutagenesis at the hprt locus by spermine and N,N"-(dithiodi-2,1-ethanediyl)bis-1,3-propanediamine (WR-33278). Mutagenesis. 1994 Jul;9(4):355–360. doi: 10.1093/mutage/9.4.355. [DOI] [PubMed] [Google Scholar]
- Smoluk G. D., Fahey R. C., Calabro-Jones P. M., Aguilera J. A., Ward J. F. Radioprotection of cells in culture by WR-2721 and derivatives: form of the drug responsible for protection. Cancer Res. 1988 Jul 1;48(13):3641–3647. [PubMed] [Google Scholar]
- Smoluk G. D., Fahey R. C., Ward J. F. Equilibrium dialysis studies of the binding of radioprotector compounds to DNA. Radiat Res. 1986 Aug;107(2):194–204. [PubMed] [Google Scholar]
- Smoluk G. D., Fahey R. C., Ward J. F. Interaction of glutathione and other low-molecular-weight thiols with DNA: evidence for counterion condensation and coion depletion near DNA. Radiat Res. 1988 Apr;114(1):3–10. [PubMed] [Google Scholar]
- Snyder R. D. Polyamine depletion is associated with altered chromatin structure in HeLa cells. Biochem J. 1989 Jun 15;260(3):697–704. doi: 10.1042/bj2600697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder R. D., Schroeder K. K. Radiosensitivity of polyamine-depleted HeLa cells and modulation by the aminothiol WR-1065. Radiat Res. 1994 Jan;137(1):67–75. [PubMed] [Google Scholar]
- Tofilon P. J., Deen D. F., Marton L. J. Polyamine depletion and drug-induced chromosomal damage: new results. Science. 1992 Nov 20;258(5086):1378–1378. doi: 10.1126/science.1455236. [DOI] [PubMed] [Google Scholar]
- Wallace H. M., Morgan D. M. Polyamines: cellular regulators? Introductory remarks. Biochem Soc Trans. 1990 Dec;18(6):1079–1080. doi: 10.1042/bst0181079. [DOI] [PubMed] [Google Scholar]