Abstract
Biosynthetic studies on the human MUC5AC mucin were performed by immunoprecipitations with antisera recognizing only the non-O-glycosylated apomucin in the colon adenocarcinoma cell line LS 174T. Pulse-chase studies and subcellular fractionations showed that MUC5AC formed dimers in the rough endoplasmic reticulum within 15 min of the initiation of biosynthesis. No non-O-glycosylated species larger than dimers were identified. The dimerization was N-glycosylation-dependent, because tunicamycin treatment significantly lowered the rate of dimerization. When the biosynthesis of MUC5AC apomucin was compared with that of MUC2 apomucin, also produced in the LS 174T cell line, both apomucins were assembled in similar ways with respect to their rates of dimerization with and without inhibition of N-glycosylation. No heterodimerization was observed between the human MUC5AC and the MUC2 apomucins despite the extensive sequence similarities in the positions of the cysteine residues in the C-termini proposed to be involved in mucin dimerization.
Full Text
The Full Text of this article is available as a PDF (318.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asker N., Axelsson M. A., Olofsson S. O., Hansson G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem. 1998 Jul 24;273(30):18857–18863. doi: 10.1074/jbc.273.30.18857. [DOI] [PubMed] [Google Scholar]
- Asker N., Baeckström D., Axelsson M. A., Carlstedt I., Hansson G. C. The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the 'insoluble' mucin of rat small intestine. Biochem J. 1995 Jun 15;308(Pt 3):873–880. doi: 10.1042/bj3080873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelsson M. A., Asker N., Hansson G. C. O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J Biol Chem. 1998 Jul 24;273(30):18864–18870. doi: 10.1074/jbc.273.30.18864. [DOI] [PubMed] [Google Scholar]
- Borén J., Wettesten M., Sjöberg A., Thorlin T., Bondjers G., Wiklund O., Olofsson S. O. The assembly and secretion of apoB 100 containing lipoproteins in Hep G2 cells. Evidence for different sites for protein synthesis and lipoprotein assembly. J Biol Chem. 1990 Jun 25;265(18):10556–10564. [PubMed] [Google Scholar]
- Boström K., Wettesten M., Borén J., Bondjers G., Wiklund O., Olofsson S. O. Pulse-chase studies of the synthesis and intracellular transport of apolipoprotein B-100 in Hep G2 cells. J Biol Chem. 1986 Oct 15;261(29):13800–13806. [PubMed] [Google Scholar]
- Carlstedt I., Herrmann A., Karlsson H., Sheehan J., Fransson L. A., Hansson G. C. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J Biol Chem. 1993 Sep 5;268(25):18771–18781. [PubMed] [Google Scholar]
- Dekker J., Strous G. J. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. J Biol Chem. 1990 Oct 25;265(30):18116–18122. [PubMed] [Google Scholar]
- Desseyn J. L., Aubert J. P., Van Seuningen I., Porchet N., Laine A. Genomic organization of the 3' region of the human mucin gene MUC5B. J Biol Chem. 1997 Jul 4;272(27):16873–16883. doi: 10.1074/jbc.272.27.16873. [DOI] [PubMed] [Google Scholar]
- Eckhardt A. E., Timpte C. S., Abernethy J. L., Zhao Y., Hill R. L. Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem. 1991 May 25;266(15):9678–9686. [PubMed] [Google Scholar]
- Gendler S. J., Spicer A. P. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607–634. doi: 10.1146/annurev.ph.57.030195.003135. [DOI] [PubMed] [Google Scholar]
- Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
- Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
- Guyonnet Duperat V., Audie J. P., Debailleul V., Laine A., Buisine M. P., Galiegue-Zouitina S., Pigny P., Degand P., Aubert J. P., Porchet N. Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes? Biochem J. 1995 Jan 1;305(Pt 1):211–219. doi: 10.1042/bj3050211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansson G. C., Baeckström D., Carlstedt I., Klinga-Levan K. Molecular cloning of a cDNA coding for a region of an apoprotein from the 'insoluble' mucin complex of rat small intestine. Biochem Biophys Res Commun. 1994 Jan 14;198(1):181–190. doi: 10.1006/bbrc.1994.1026. [DOI] [PubMed] [Google Scholar]
- Karlsson N. G., Johansson M. E., Asker N., Karlsson H., Gendler S. J., Carlstedt I., Hansson G. C. Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J. 1996 Oct;13(5):823–831. doi: 10.1007/BF00702346. [DOI] [PubMed] [Google Scholar]
- Keates A. C., Nunes D. P., Afdhal N. H., Troxler R. F., Offner G. D. Molecular cloning of a major human gall bladder mucin: complete C-terminal sequence and genomic organization of MUC5B. Biochem J. 1997 May 15;324(Pt 1):295–303. doi: 10.1042/bj3240295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klomp L. W., van Rens L., Strous G. J. Identification of a human gastric mucin precursor: N-linked glycosylation and oligomerization. Biochem J. 1994 Dec 15;304(Pt 3):693–698. doi: 10.1042/bj3040693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lesuffleur T., Porchet N., Aubert J. P., Swallow D., Gum J. R., Kim Y. S., Real F. X., Zweibaum A. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci. 1993 Nov;106(Pt 3):771–783. doi: 10.1242/jcs.106.3.771. [DOI] [PubMed] [Google Scholar]
- Lesuffleur T., Roche F., Hill A. S., Lacasa M., Fox M., Swallow D. M., Zweibaum A., Real F. X. Characterization of a mucin cDNA clone isolated from HT-29 mucus-secreting cells. The 3' end of MUC5AC? J Biol Chem. 1995 Jun 9;270(23):13665–13673. doi: 10.1074/jbc.270.23.13665. [DOI] [PubMed] [Google Scholar]
- Meezaman D., Charles P., Daskal E., Polymeropoulos M. H., Martin B. M., Rose M. C. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). J Biol Chem. 1994 Apr 29;269(17):12932–12939. [PubMed] [Google Scholar]
- Perez-Vilar J., Eckhardt A. E., Hill R. L. Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J Biol Chem. 1996 Apr 19;271(16):9845–9850. doi: 10.1074/jbc.271.16.9845. [DOI] [PubMed] [Google Scholar]
- Pigny P., Guyonnet-Duperat V., Hill A. S., Pratt W. S., Galiegue-Zouitina S., d'Hooge M. C., Laine A., Van-Seuningen I., Degand P., Gum J. R. Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics. 1996 Dec 15;38(3):340–352. doi: 10.1006/geno.1996.0637. [DOI] [PubMed] [Google Scholar]
- Sadler J. E., Shelton-Inloes B. B., Sorace J. M., Harlan J. M., Titani K., Davie E. W. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6394–6398. doi: 10.1073/pnas.82.19.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strous G. J., Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992;27(1-2):57–92. doi: 10.3109/10409239209082559. [DOI] [PubMed] [Google Scholar]
- Sun P. D., Davies D. R. The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995;24:269–291. doi: 10.1146/annurev.bb.24.060195.001413. [DOI] [PubMed] [Google Scholar]
- Toribara N. W., Ho S. B., Gum E., Gum J. R., Jr, Lau P., Kim Y. S. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis Of the primary amino acid sequence. J Biol Chem. 1997 Jun 27;272(26):16398–16403. doi: 10.1074/jbc.272.26.16398. [DOI] [PubMed] [Google Scholar]
- Voynow J. A., Rose M. C. Quantitation of mucin mRNA in respiratory and intestinal epithelial cells. Am J Respir Cell Mol Biol. 1994 Dec;11(6):742–750. doi: 10.1165/ajrcmb.11.6.7946402. [DOI] [PubMed] [Google Scholar]
- Wagner D. D. Cell biology of von Willebrand factor. Annu Rev Cell Biol. 1990;6:217–246. doi: 10.1146/annurev.cb.06.110190.001245. [DOI] [PubMed] [Google Scholar]
- van Klinken B. J., Einerhand A. W., Büller H. A., Dekker J. The oligomerization of a family of four genetically clustered human gastrointestinal mucins. Glycobiology. 1998 Jan;8(1):67–75. doi: 10.1093/glycob/8.1.67. [DOI] [PubMed] [Google Scholar]
- van Klinken B. J., Oussoren E., Weenink J. J., Strous G. J., Büller H. A., Dekker J., Einerhand A. W. The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J. 1996 Oct;13(5):757–768. doi: 10.1007/BF00702340. [DOI] [PubMed] [Google Scholar]
- van de Bovenkamp J. H., Hau C. M., Strous G. J., Büller H. A., Dekker J., Einerhand A. W. Molecular cloning of human gastric mucin MUC5AC reveals conserved cysteine-rich D-domains and a putative leucine zipper motif. Biochem Biophys Res Commun. 1998 Apr 28;245(3):853–859. doi: 10.1006/bbrc.1998.8535. [DOI] [PubMed] [Google Scholar]