Abstract
A poly(ADP-ribose) polymerase-like enzyme, detected in a crude homogenate from Sulfolobus solfataricus by means of activity and immunoblot analyses, was purified to electrophoretic homogeneity by a rapid procedure including two sequential affinity chromatographies, on NAD+-agarose and DNA-Sepharose. The latter column selected specifically the poly(ADP-ribosyl)ating enzyme with a 17% recovery of enzymic activity and a purification of more than 15000-fold. The molecular mass (54-55 kDa) assessed by SDS/PAGE and immunoblot was definitely lower than that determined for the corresponding eukaryotic protein. The enzyme was proved to be thermophilic, with a temperature optimum of approx. 80 degreesC, and thermostable, with a half-life of 204 min at 80 degreesC, in good agreement with the requirements of a thermozyme. It displayed a Km towards NAD+ of 154+/-50 microM; in the pH range 6.5-10.0 the activity values were similar, not showing a real optimum pH. The enzyme was able to bind homologous DNA, as evidenced by the ethidium bromide displacement assay. The product of the ADP-ribosylating reaction co-migrated with the short oligomers of ADP-ribose (less than 6 residues) from a eukaryotic source. Reverse-phase HPLC analysis of the products, after digestion with phosphodiesterase I, gave an elution profile reproducing that obtained by the enzymic digestion of the rat testis poly(ADP-ribose). These results strongly suggest that the activities of the purified enzyme include the elongation step.
Full Text
The Full Text of this article is available as a PDF (373.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boulikas T. Poly(ADP-ribosyl)ation, DNA strand breaks, chromatin and cancer. Toxicol Lett. 1993 Apr;67(1-3):129–150. doi: 10.1016/0378-4274(93)90051-x. [DOI] [PubMed] [Google Scholar]
- Camacho M. L., Brown R. A., Bonete M. J., Danson M. J., Hough D. W. Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett. 1995 Dec 1;134(1):85–90. doi: 10.1111/j.1574-6968.1995.tb07919.x. [DOI] [PubMed] [Google Scholar]
- Colombo S., D'Auria S., Fusi P., Zecca L., Raia C. A., Tortora P. Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1992 Jun 1;206(2):349–357. doi: 10.1111/j.1432-1033.1992.tb16934.x. [DOI] [PubMed] [Google Scholar]
- De Rosa M., Gambacorta A., Nicolaus B., Giardina P., Poerio E., Buonocore V. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J. 1984 Dec 1;224(2):407–414. doi: 10.1042/bj2240407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faraone-Mennella M. R., De Lucia F., De Maio A., Gambacorta A., Quesada P., De Rosa M., Nicolaus B., Farina B. ADP-ribosylation reactions in Sulfolobus solfataricus, a thermoacidophilic archaeon. Biochim Biophys Acta. 1995 Jan 19;1246(2):151–159. doi: 10.1016/0167-4838(94)00169-h. [DOI] [PubMed] [Google Scholar]
- Faraone-Mennella M. R., Farina B. In the thermophilic archaeon Sulfolobus solfataricus a DNA-binding protein is in vitro (Adpribosyl)ated. Biochem Biophys Res Commun. 1995 Mar 8;208(1):55–62. doi: 10.1006/bbrc.1995.1304. [DOI] [PubMed] [Google Scholar]
- Faraone-Mennella M. R., Gambacorta A., Nicolaus B., Farina B. Immunochemical detection of ADP-ribosylating enzymes in the archaeon Sulfolobus solfataricus. FEBS Lett. 1996 Jan 8;378(2):199–201. doi: 10.1016/0014-5793(95)01455-1. [DOI] [PubMed] [Google Scholar]
- Ikejima M., Noguchi S., Yamashita R., Ogura T., Sugimura T., Gill D. M., Miwa M. The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA. J Biol Chem. 1990 Dec 15;265(35):21907–21913. [PubMed] [Google Scholar]
- Keeling P. J., Doolittle W. F. Archaea: narrowing the gap between prokaryotes and eukaryotes. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5761–5764. doi: 10.1073/pnas.92.13.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennelly P. J., Oxenrider K. A., Leng J., Cantwell J. S., Zhao N. Identification of a serine/threonine-specific protein phosphatase from the archaebacterium Sulfolobus solfataricus. J Biol Chem. 1993 Mar 25;268(9):6505–6510. [PubMed] [Google Scholar]
- Klenk H. P., Doolittle W. F. Evolution. Archaea and eukaryotes versus bacteria? Curr Biol. 1994 Oct 1;4(10):920–922. doi: 10.1016/s0960-9822(00)00206-2. [DOI] [PubMed] [Google Scholar]
- Langer D., Hain J., Thuriaux P., Zillig W. Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5768–5772. doi: 10.1073/pnas.92.13.5768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lautier D., Lagueux J., Thibodeau J., Ménard L., Poirier G. G. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem. 1993 May 26;122(2):171–193. doi: 10.1007/BF01076101. [DOI] [PubMed] [Google Scholar]
- Lepiniec L., Babiychuk E., Kushnir S., Van Montagu M., Inzé D. Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase. FEBS Lett. 1995 May 8;364(2):103–108. doi: 10.1016/0014-5793(95)00335-7. [DOI] [PubMed] [Google Scholar]
- Marino G., Nitti G., Arnone M. I., Sannia G., Gambacorta A., De Rosa M. Purification and characterization of aspartate aminotransferase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. J Biol Chem. 1988 Sep 5;263(25):12305–12309. [PubMed] [Google Scholar]
- Panzeter P. L., Althaus F. R. High resolution size analysis of ADP-ribose polymers using modified DNA sequencing gels. Nucleic Acids Res. 1990 Apr 25;18(8):2194–2194. doi: 10.1093/nar/18.8.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonin F., Poch O., Delarue M., de Murcia G. Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem. 1993 Apr 25;268(12):8529–8535. [PubMed] [Google Scholar]
- Sutrave P., Shafer B. K., Strathern J. N., Hughes S. H. Isolation, identification and characterization of the FUN12 gene of Saccharomyces cerevisiae. Gene. 1994 Sep 2;146(2):209–213. doi: 10.1016/0378-1119(94)90294-1. [DOI] [PubMed] [Google Scholar]
- Wellman S. E. Carboxyl-terminal peptides from histone H1 variants: DNA binding characteristics and solution conformation. Biopolymers. 1996 Oct;39(4):491–501. doi: 10.1002/(SICI)1097-0282(199610)39:4%3C491::AID-BIP2%3E3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Murcia G., Jacobson M., Shall S. Regulation by ADP-ribosylation. Trends Cell Biol. 1995 Feb;5(2):78–81. doi: 10.1016/s0962-8924(00)88951-5. [DOI] [PubMed] [Google Scholar]
- de Rosa M., Gambacorta A., Bu'lock J. D. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol. 1975 Jan;86(1):156–164. doi: 10.1099/00221287-86-1-156. [DOI] [PubMed] [Google Scholar]