Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):481–490. doi: 10.1042/bj3350481

Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin.

C Richter 1, T Tanaka 1, R Y Yada 1
PMCID: PMC1219805  PMID: 9794784

Abstract

The gastric aspartic proteinases (pepsin A, pepsin B, gastricsin and chymosin) are synthesized in the gastric mucosa as inactive precursors, known as zymogens. The gastric zymogens each contain a prosegment (i.e. additional residues at the N-terminus of the active enzyme) that serves to stabilize the inactive form and prevent entry of the substrate to the active site. Upon ingestion of food, each of the zymogens is released into the gastric lumen and undergoes conversion into active enzyme in the acidic gastric juice. This activation reaction is initiated by the disruption of electrostatic interactions between the prosegment and the active enzyme moiety at acidic pH values. The conversion of the zymogen into its active form is a complex process, involving a series of conformational changes and bond cleavage steps that lead to the unveiling of the active site and ultimately the removal and dissociation of the prosegment from the active centre of the enzyme. During this activation reaction, both the prosegment and the active enzyme undergo changes in conformation, and the proteolytic cleavage of the prosegment can occur in one or more steps by either an intra- or inter-molecular reaction. This variability in the mechanism of proteolysis appears to be attributable in part to the structure of the prosegment. Because of the differences in the activation mechanisms among the four types of gastric zymogens and between species of the same zymogen type, no single model of activation can be proposed. The mechanism of activation of the gastric aspartic proteinases and the contribution of the prosegment to this mechanism are discussed, along with future directions for research.

Full Text

The Full Text of this article is available as a PDF (645.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad-Zapatero C., Rydel T. J., Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. doi: 10.1002/prot.340080109. [DOI] [PubMed] [Google Scholar]
  2. Athauda S. B., Tanji M., Kageyama T., Takahashi K. A comparative study on the NH2-terminal amino acid sequences and some other properties of six isozymic forms of human pepsinogens and pepsins. J Biochem. 1989 Nov;106(5):920–927. doi: 10.1093/oxfordjournals.jbchem.a122952. [DOI] [PubMed] [Google Scholar]
  3. Auer H. E., Glick D. M. Early events of pepsinogen activation. Biochemistry. 1984 Jun 5;23(12):2735–2739. doi: 10.1021/bi00307a031. [DOI] [PubMed] [Google Scholar]
  4. Bank R. A., Crusius B. C., Zwiers T., Meuwissen S. G., Arwert F., Pronk J. C. Identification of a Glu greater than Lys substitution in the activation segment of human pepsinogen A-3 and -5 isozymogens by peptide mapping using endoproteinase Lys-C. FEBS Lett. 1988 Sep 26;238(1):105–108. doi: 10.1016/0014-5793(88)80235-7. [DOI] [PubMed] [Google Scholar]
  5. Bank R. A., Russell R. B., Pals G., James M. N. Consequences of intramolecular ionic interactions for the activation rate of human pepsinogens A and C as revealed by molecular modelling. Adv Exp Med Biol. 1991;306:101–105. doi: 10.1007/978-1-4684-6012-4_11. [DOI] [PubMed] [Google Scholar]
  6. Baudys M., Kostka V. Covalent structure of chicken pepsinogen. Eur J Biochem. 1983 Oct 17;136(1):89–99. doi: 10.1111/j.1432-1033.1983.tb07709.x. [DOI] [PubMed] [Google Scholar]
  7. Bohak Z. The kinetics of the conversion of chicken pepsinogen to chicken pepsin. Eur J Biochem. 1973 Feb 1;32(3):547–554. doi: 10.1111/j.1432-1033.1973.tb02640.x. [DOI] [PubMed] [Google Scholar]
  8. Bustin M., Conway-Jacobs A. Intramolecular activation of porcine pepsinogen. J Biol Chem. 1971 Feb 10;246(3):615–620. [PubMed] [Google Scholar]
  9. Christensen K. A., Pedersen V. B., Foltmann B. Identification of an enzymatically active intermediate in the activation of porcine pepsinogen. FEBS Lett. 1977 Apr 15;76(2):214–218. doi: 10.1016/0014-5793(77)80155-5. [DOI] [PubMed] [Google Scholar]
  10. Cooper J. B., Khan G., Taylor G., Tickle I. J., Blundell T. L. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J Mol Biol. 1990 Jul 5;214(1):199–222. doi: 10.1016/0022-2836(90)90156-G. [DOI] [PubMed] [Google Scholar]
  11. Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
  12. Dykes C. W., Kay J. Conversion of pepsinogen into pepsin is not a one-step process. Biochem J. 1976 Jan 1;153(1):141–144. doi: 10.1042/bj1530141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evers M. P., Zelle B., Bebelman J. P., Pronk J. C., Mager W. H., Planta R. J., Eriksson A. W., Frants R. R. Cloning and sequencing of rhesus monkey pepsinogen A cDNA. Gene. 1988 May 30;65(2):179–185. doi: 10.1016/0378-1119(88)90454-4. [DOI] [PubMed] [Google Scholar]
  14. Foltmann B. Activation of human pepsinogens. FEBS Lett. 1988 Dec 5;241(1-2):69–72. doi: 10.1016/0014-5793(88)81033-0. [DOI] [PubMed] [Google Scholar]
  15. Foltmann B., Drøhse H. B., Nielsen P. K., James M. N. Separation of porcine pepsinogen A and progastricsin. Sequencing of the first 73 amino acid residues in progastricsin. Biochim Biophys Acta. 1992 May 22;1121(1-2):75–82. doi: 10.1016/0167-4838(92)90339-f. [DOI] [PubMed] [Google Scholar]
  16. Foltmann B. Gastric proteinases--structure, function, evolution and mechanism of action. Essays Biochem. 1981;17:52–84. [PubMed] [Google Scholar]
  17. Foltmann B., Jensen A. L. Human progastricsin. Analysis of intermediates during activation into gastricsin and determination of the amino acid sequence of the propart. Eur J Biochem. 1982 Nov;128(1):63–70. [PubMed] [Google Scholar]
  18. Foltmann B., Pedersen V. B., Jacobsen H., Kauffman D., Wybrandt G. The complete amino acid sequence of prochymosin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2321–2324. doi: 10.1073/pnas.74.6.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Foltmann B. Structure and function of proparts in zymogens for aspartic proteinases. Biol Chem Hoppe Seyler. 1988 May;369 (Suppl):311–314. [PubMed] [Google Scholar]
  20. Glick D. M. A kinetic analysis of the activation of pig pepsinogen by chemical and physical techniques. Biol Chem Hoppe Seyler. 1990 May;371 (Suppl):289–293. [PubMed] [Google Scholar]
  21. Glick D. M., Auer H. E., Rich D. H., Kawai M., Kamath A. Pepsinogen activation: genesis of the binding site. Biochemistry. 1986 Apr 22;25(8):1858–1864. doi: 10.1021/bi00356a003. [DOI] [PubMed] [Google Scholar]
  22. Glick D. M., Hilt C. R., Mende-Mueller L. Conformational change that accompanies pepsinogen activation observed in real time by fluorescence energy transfer. Int J Pept Protein Res. 1991 Mar;37(3):230–235. doi: 10.1111/j.1399-3011.1991.tb00275.x. [DOI] [PubMed] [Google Scholar]
  23. Glick D. M., Shalitin Y., Hilt C. R. Studies on the irreversible step of pepsinogen activation. Biochemistry. 1989 Mar 21;28(6):2626–2630. doi: 10.1021/bi00432a040. [DOI] [PubMed] [Google Scholar]
  24. Glick D. M., Valler M. J., Rowlands C. C., Evans J. C., Kay J. Activation of spin-labeled chicken pepsinogen. Biochemistry. 1982 Aug 3;21(16):3746–3750. doi: 10.1021/bi00259a004. [DOI] [PubMed] [Google Scholar]
  25. Harboe M., Andersen P. M., Foltmann B., Kay J., Kassell B. The activation of bovine pepsinogen. Sequence of the peptides released, identification of a pepsin inhibitor. J Biol Chem. 1974 Jul 25;249(14):4487–4494. [PubMed] [Google Scholar]
  26. Harris T. J., Lowe P. A., Lyons A., Thomas P. G., Eaton M. A., Millican T. A., Patel T. P., Bose C. C., Carey N. H., Doel M. T. Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin. Nucleic Acids Res. 1982 Apr 10;10(7):2177–2187. doi: 10.1093/nar/10.7.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hartsuck J. A., Koelsch G., Remington S. J. The high-resolution crystal structure of porcine pepsinogen. Proteins. 1992 May;13(1):1–25. doi: 10.1002/prot.340130102. [DOI] [PubMed] [Google Scholar]
  28. Hartsuck J. A., Marciniszyn J., Jr, Huang J. S., Tang J. Intramolecular activation of pepsinogen. Adv Exp Med Biol. 1977;95:85–102. doi: 10.1007/978-1-4757-0719-9_6. [DOI] [PubMed] [Google Scholar]
  29. Hayano T., Sogawa K., Ichihara Y., Fujii-Kuriyama Y., Takahashi K. Primary structure of human pepsinogen C gene. J Biol Chem. 1988 Jan 25;263(3):1382–1385. [PubMed] [Google Scholar]
  30. Hidaka M., Sasaki K., Uozumi T., Beppu T. Cloning and structural analysis of the calf prochymosin gene. Gene. 1986;43(3):197–203. doi: 10.1016/0378-1119(86)90207-6. [DOI] [PubMed] [Google Scholar]
  31. Hirasawa A., Athauda S. B., Takahashi K. Purification and characterization of turtle pepsinogen and pepsin. J Biochem. 1996 Aug;120(2):407–414. doi: 10.1093/oxfordjournals.jbchem.a021427. [DOI] [PubMed] [Google Scholar]
  32. Houen G., Madsen M. T., Harlow K. W., Lønblad P., Foltmann B. The primary structure and enzymic properties of porcine prochymosin and chymosin. Int J Biochem Cell Biol. 1996 Jun;28(6):667–675. doi: 10.1016/1357-2725(96)00002-7. [DOI] [PubMed] [Google Scholar]
  33. Ichihara Y., Sogawa K., Morohashi K., Fujii-Kuriyama Y., Takahashi K. Nucleotide sequence of a nearly full-length cDNA coding for pepsinogen of rat gastric mucosa. Eur J Biochem. 1986 Nov 17;161(1):7–12. doi: 10.1111/j.1432-1033.1986.tb10117.x. [DOI] [PubMed] [Google Scholar]
  34. Inokuchi T., Kobayashi K., Horiuchi S. Isolation of pepsinogen A from gastric mucosa of bullfrog, Rana catesbeiana. Comp Biochem Physiol B Biochem Mol Biol. 1995 May;111(1):111–117. doi: 10.1016/0305-0491(94)00219-k. [DOI] [PubMed] [Google Scholar]
  35. Ishihara T., Ichihara Y., Hayano T., Katsura I., Sogawa K., Fujii-Kuriyama Y., Takahashi K. Primary structure and transcriptional regulation of rat pepsinogen C gene. J Biol Chem. 1989 Jun 15;264(17):10193–10199. [PubMed] [Google Scholar]
  36. James M. N., Sielecki A. R. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature. 1986 Jan 2;319(6048):33–38. doi: 10.1038/319033a0. [DOI] [PubMed] [Google Scholar]
  37. Kageyama T. Analysis of the activation of pepsinogen in the presence of protein substrates and estimation of the intrinsic proteolytic activity of pepsinogen. Eur J Biochem. 1988 Oct 1;176(3):543–549. doi: 10.1111/j.1432-1033.1988.tb14312.x. [DOI] [PubMed] [Google Scholar]
  38. Kageyama T., Ichinose M., Miki K., Athauda S. B., Tanji M., Takahashi K. Difference of activation processes and structure of activation peptides in human pepsinogens A and progastricsin. J Biochem. 1989 Jan;105(1):15–22. doi: 10.1093/oxfordjournals.jbchem.a122610. [DOI] [PubMed] [Google Scholar]
  39. Kageyama T., Ichinose M., Tsukada S., Miki K., Kurokawa K., Koiwai O., Tanji M., Yakabe E., Athauda S. B., Takahashi K. Gastric procathepsin E and progastricsin from guinea pig. Purification, molecular cloning of cDNAs, and characterization of enzymatic properties, with special reference to procathepsin E. J Biol Chem. 1992 Aug 15;267(23):16450–16459. [PubMed] [Google Scholar]
  40. Kageyama T., Moriyama A., Takahashi K. Purification and characterization of pepsinogens and pepsins from Asiatic black bear, and amino acid sequence determination of the NH2-terminal 60 residues of the major pepsinogen. J Biochem. 1983 Nov;94(5):1557–1567. [PubMed] [Google Scholar]
  41. Kageyama T., Takahashi K. Activation mechanism of monkey and porcine pepsinogens A. One-step and stepwise activation pathways and their relation to intramolecular and intermolecular reactions. Eur J Biochem. 1987 Jun 15;165(3):483–490. doi: 10.1111/j.1432-1033.1987.tb11464.x. [DOI] [PubMed] [Google Scholar]
  42. Kageyama T., Takahashi K. Monkey pepsinogens and pepsins. VI. One-step activation of Japanese monkey pepsinogen to pepsin. J Biochem. 1982 Oct;92(4):1179–1188. doi: 10.1093/oxfordjournals.jbchem.a134034. [DOI] [PubMed] [Google Scholar]
  43. Kageyama T., Takahashi K. Monkey pepsinogens and pepsins. VII. Analysis of the activation process and determination of the NH2-terminal 60-residue sequence of Japanese monkey progastricsin, and molecular evolution of pepsinogens. J Biochem. 1985 Apr;97(4):1235–1246. doi: 10.1093/oxfordjournals.jbchem.a135169. [DOI] [PubMed] [Google Scholar]
  44. Kageyama T., Takahashi K. Occurrence of two different pathways in the activation of porcine pepsinogen to pepsin. J Biochem. 1983 Mar;93(3):743–754. doi: 10.1093/jb/93.3.743. [DOI] [PubMed] [Google Scholar]
  45. Kageyama T., Takahashi K. Rabbit pepsinogens. Purification, characterization, analysis of the conversion process to pepsin and determination of the NH2-terminal amino-acid sequences. Eur J Biochem. 1984 Jun 1;141(2):261–269. doi: 10.1111/j.1432-1033.1984.tb08186.x. [DOI] [PubMed] [Google Scholar]
  46. Kageyama T., Takahashi K. The complete amino acid sequence of monkey pepsinogen A. J Biol Chem. 1986 Apr 5;261(10):4395–4405. [PubMed] [Google Scholar]
  47. Kageyama T., Takahashi K. The complete amino acid sequence of monkey progastricsin. J Biol Chem. 1986 Apr 5;261(10):4406–4419. [PubMed] [Google Scholar]
  48. Kageyama T., Tanabe K., Koiwai O. Development-dependent expression of isozymogens of monkey pepsinogens and structural differences between them. Eur J Biochem. 1991 Nov 15;202(1):205–215. doi: 10.1111/j.1432-1033.1991.tb16364.x. [DOI] [PubMed] [Google Scholar]
  49. Kageyama T., Tanabe K., Koiwai O. Structure and development of rabbit pepsinogens. Stage-specific zymogens, nucleotide sequences of cDNAs, molecular evolution, and gene expression during development. J Biol Chem. 1990 Oct 5;265(28):17031–17038. [PubMed] [Google Scholar]
  50. Khan A. R., Cherney M. M., Tarasova N. I., James M. N. Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin. Nat Struct Biol. 1997 Dec;4(12):1010–1015. doi: 10.1038/nsb1297-1010. [DOI] [PubMed] [Google Scholar]
  51. Khan A. R., James M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. doi: 10.1002/pro.5560070401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Koelsch G., Mares M., Metcalf P., Fusek M. Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett. 1994 Apr 18;343(1):6–10. doi: 10.1016/0014-5793(94)80596-2. [DOI] [PubMed] [Google Scholar]
  53. Lin X. L., Wong R. N., Tang J. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J Biol Chem. 1989 Mar 15;264(8):4482–4489. [PubMed] [Google Scholar]
  54. Marciniszyn J., Jr, Huang J. S., Hartsuck J. A., Tang J. Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem. 1976 Nov 25;251(22):7095–7102. [PubMed] [Google Scholar]
  55. McCaman M. T., Cummings D. B. A mutated bovine prochymosin zymogen can be activated without proteolytic processing at low pH. J Biol Chem. 1986 Nov 25;261(33):15345–15348. [PubMed] [Google Scholar]
  56. McCaman M. T., Cummings D. B. Unusual zymogen-processing properties of a mutated form of prochymosin. Proteins. 1988;3(4):256–261. doi: 10.1002/prot.340030407. [DOI] [PubMed] [Google Scholar]
  57. McPhie P. A spectrophotometric investigation of the pepsinogen-pepsin conversion. J Biol Chem. 1972 Jul 10;247(13):4277–4281. [PubMed] [Google Scholar]
  58. McPhie P. Pepsinogen: activation by a unimolecular mechanism. Biochem Biophys Res Commun. 1974 Feb 4;56(3):789–792. doi: 10.1016/0006-291x(74)90674-3. [DOI] [PubMed] [Google Scholar]
  59. Moir D., Mao J., Schumm J. W., Vovis G. F., Alford B. L., Taunton-Rigby A. Molecular cloning and characterization of double-stranded cDNA coding for bovine chymosin. Gene. 1982 Jul-Aug;19(1):127–138. doi: 10.1016/0378-1119(82)90197-4. [DOI] [PubMed] [Google Scholar]
  60. Moore S. A., Sielecki A. R., Chernaia M. M., Tarasova N. I., James M. N. Crystal and molecular structures of human progastricsin at 1.62 A resolution. J Mol Biol. 1995 Mar 31;247(3):466–485. doi: 10.1006/jmbi.1994.0154. [DOI] [PubMed] [Google Scholar]
  61. Narita Y., Oda S., Moriyama A., Takenaka O., Kageyama T. Pepsinogens and pepsins from house musk shrew, Suncus murinus: purification, characterization, determination of the amino-acid sequences of the activation segments, and analysis of proteolytic specificities. J Biochem. 1997 Jun;121(6):1010–1017. doi: 10.1093/oxfordjournals.jbchem.a021687. [DOI] [PubMed] [Google Scholar]
  62. Nielsen F. S., Foltmann B. Activation of porcine pepsinogen A. The stability of two non-covalent activation intermediates at pH 8.5. Eur J Biochem. 1993 Oct 1;217(1):137–142. doi: 10.1111/j.1432-1033.1993.tb18228.x. [DOI] [PubMed] [Google Scholar]
  63. Nielsen P. K., Foltmann B. Purification and characterization of porcine pepsinogen B and pepsin B. Arch Biochem Biophys. 1995 Oct 1;322(2):417–422. doi: 10.1006/abbi.1995.1483. [DOI] [PubMed] [Google Scholar]
  64. Ong E. B., Perlmann G. E. The amino-terminal sequence of porcine pepsinogen. J Biol Chem. 1968 Dec 10;243(23):6104–6109. [PubMed] [Google Scholar]
  65. Pedersen V. B., Christensen K. A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur J Biochem. 1979 Mar;94(2):573–580. doi: 10.1111/j.1432-1033.1979.tb12927.x. [DOI] [PubMed] [Google Scholar]
  66. Pedersen V. B., Foltmann B. The amino acid sequence of a hitherto unobserved segment from porcine pepsinogen preceeding the N-terminus of pepsin. FEBS Lett. 1973 Sep 15;35(2):255–256. doi: 10.1016/0014-5793(73)80298-4. [DOI] [PubMed] [Google Scholar]
  67. Pohl J., Baudys M., Kostka V. Chromophoric peptide substrates for activity determination of animal aspartic proteinases in the presence of their zymogens: a novel assay. Anal Biochem. 1983 Aug;133(1):104–109. doi: 10.1016/0003-2697(83)90228-2. [DOI] [PubMed] [Google Scholar]
  68. Sanny C. G., Hartsuck J. A., Tang J. Conversion of pepsinogen to pepsin. Further evidence for intramolecular and pepsin-catalyzed activation. J Biol Chem. 1975 Apr 10;250(7):2635–2639. [PubMed] [Google Scholar]
  69. Sepulveda P., Marciniszyn J., Jr, Liu D., Tang J. Primary structure of porcine pepsin. III. Amino acid sequence of a cyanogen bromide fragment, CB2A, and the complete structure of porcine pepsin. J Biol Chem. 1975 Jul 10;250(13):5082–5088. [PubMed] [Google Scholar]
  70. Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
  71. Sielecki A. R., Fujinaga M., Read R. J., James M. N. Refined structure of porcine pepsinogen at 1.8 A resolution. J Mol Biol. 1991 Jun 20;219(4):671–692. doi: 10.1016/0022-2836(91)90664-r. [DOI] [PubMed] [Google Scholar]
  72. Sogawa K., Fujii-Kuriyama Y., Mizukami Y., Ichihara Y., Takahashi K. Primary structure of human pepsinogen gene. J Biol Chem. 1983 Apr 25;258(8):5306–5311. [PubMed] [Google Scholar]
  73. Squires E. J., Haard N. F., Feltham L. A. Gastric proteases of the Greenland cod Gadus ogac. I. Isolation and kinetic properties. Biochem Cell Biol. 1986 Mar;64(3):205–214. doi: 10.1139/o86-030. [DOI] [PubMed] [Google Scholar]
  74. Tanaka T., Yada R. Y. Engineered porcine pepsinogen exhibits dominant unimolecular activation. Arch Biochem Biophys. 1997 Apr 15;340(2):355–358. doi: 10.1006/abbi.1997.9925. [DOI] [PubMed] [Google Scholar]
  75. Tang J., Sepulveda P., Marciniszyn J., Jr, Chen K. C., Huang W. Y., Tao N., Liu D., Lanier J. P. Amino-acid sequence of porcine pepsin. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3437–3439. doi: 10.1073/pnas.70.12.3437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Tang J., Wong R. N. Evolution in the structure and function of aspartic proteases. J Cell Biochem. 1987 Jan;33(1):53–63. doi: 10.1002/jcb.240330106. [DOI] [PubMed] [Google Scholar]
  77. Tanji M., Kageyama T., Takahashi K. Tuna pepsinogens and pepsins. Purification, characterization and amino-terminal sequences. Eur J Biochem. 1988 Nov 1;177(2):251–259. doi: 10.1111/j.1432-1033.1988.tb14369.x. [DOI] [PubMed] [Google Scholar]
  78. Tanji M., Yakabe E., Kageyama T., Takahashi K. The primary structure of the major pepsinogen from the gastric mucosa of tuna stomach. J Biochem. 1996 Sep;120(3):647–656. doi: 10.1093/oxfordjournals.jbchem.a021461. [DOI] [PubMed] [Google Scholar]
  79. Tsukagoshi N., Ando Y., Tomita Y., Uchida R., Takemura T., Sasaki T., Yamagata H., Udaka S., Ichihara Y., Takahashi K. Nucleotide sequence and expression in Escherichia coli of cDNA of swine pepsinogen: involvement of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene. 1988 May 30;65(2):285–292. doi: 10.1016/0378-1119(88)90465-9. [DOI] [PubMed] [Google Scholar]
  80. Twining S. S., Alexander P. A., Huibregtse K., Glick D. M. A pepsinogen from rainbow trout. Comp Biochem Physiol B. 1983;75(1):109–112. doi: 10.1016/0305-0491(83)90046-9. [DOI] [PubMed] [Google Scholar]
  81. Twining S. S., Huibregtse K., Glick D. M. A pepsinogen from dog stomach. Comp Biochem Physiol B. 1983;75(1):103–107. doi: 10.1016/0305-0491(83)90045-7. [DOI] [PubMed] [Google Scholar]
  82. Twining S. S., Sealy R. C., Glick D. M. Preparation and activation of a spin-labeled pepsinogen. Biochemistry. 1981 Mar 3;20(5):1267–1272. doi: 10.1021/bi00508a034. [DOI] [PubMed] [Google Scholar]
  83. Wang J. L., Edelman G. M. Fluorescent probes for conformational states of proteins. IV. The pepsinogen-pepsin conversion. J Biol Chem. 1971 Mar 10;246(5):1185–1191. [PubMed] [Google Scholar]
  84. Yakabe E., Tanji M., Ichinose M., Goto S., Miki K., Kurokawa K., Ito H., Kageyama T., Takahashi K. Purification, characterization, and amino acid sequences of pepsinogens and pepsins from the esophageal mucosa of bullfrog (Rana catesbeiana) J Biol Chem. 1991 Nov 25;266(33):22436–22443. [PubMed] [Google Scholar]
  85. al-Janabi J., Hartsuck J. A., Tang J. Kinetics and mechanism of pepsinogen activation. J Biol Chem. 1972 Jul 25;247(14):4628–4632. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES