Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):495–498. doi: 10.1042/bj3350495

Rapid purification and characterization of L-dopachrome-methyl ester tautomerase (macrophage-migration-inhibitory factor) from Trichinella spiralis, Trichuris muris and Brugia pahangi.

J L Pennock 1, J M Behnke 1, Q D Bickle 1, E Devaney 1, R K Grencis 1, R E Isaac 1, G W Joshua 1, M E Selkirk 1, Y Zhang 1, D J Meyer 1
PMCID: PMC1219807  PMID: 9794786

Abstract

Macrophage-migration-inhibition factor (MIF) is an essential stimulator of mammalian T-lymphocyte-dependent adaptive immunity, hence MIF orthologues might be expressed by infectious organisms as an immunosubversive stratagem. Since MIF actively catalyses the tautomerization of the methyl ester of l-dopachrome (using dopachrome tautomerase), the occurrence of MIF orthologues in several parasitic helminths was investigated by assaying and characterizing such activity. Evidence of MIF orthologues (dopachrome tautomerase) was found in the soluble fraction of the nematodes Trichinella spiralis (stage 4 larvae) and Trichuris muris (adults), and the filarial nematode Brugia pahangi (adults). The MIF orthologues of Tr. muris (TmMIF) and B. pahangi (BpMIF) were purified to homogeneity using phenyl-agarose chromatography, that of T. spiralis (TsMIF) required a further step: cation-exchange FPLC. Retention time on reverse-phase HPLC and Mr on SDS/PAGE of the nematode MIFs were similar to those of human MIF. N-terminal sequences (19 residues) of TsMIF and TmMIF showed 47 and 36% identity, respectively, with human MIF. The N-terminal sequence of BpMIF (14 residues) was identical to that of an MIF orthologue in the genome of B. malayi (Swiss-Prot, P91850) and showed 43% identity to either human or TsMIF. TsMIF had 10-fold higher dopachrome tautomerase activity than MIF from the other sources. The enzyme activities of TsMIF, BpMIF and TmMIF were less sensitive to inhibition by haematin (I50: >15 microM, >15 microM and 2.6 microM, respectively) than that of human MIF (I50 0.2 microM). Significant dopachrome tautomerase or phenyl-agarose-purifiable MIF-like protein was not detected in the soluble fraction of the nematodes Heligmosomoides polygyrus and Nippostrongylus brasiliensis, the cestode Hymenolepis diminuta, or the trematodes Schistosoma mansoni, S. japonicum and S. haematobium, or the free-living nematode, Caenorhabditis elegans, which does contain an MIF-related gene.

Full Text

The Full Text of this article is available as a PDF (272.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacher M., Metz C. N., Calandra T., Mayer K., Chesney J., Lohoff M., Gemsa D., Donnelly T., Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7849–7854. doi: 10.1073/pnas.93.15.7849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bendrat K., Al-Abed Y., Callaway D. J., Peng T., Calandra T., Metz C. N., Bucala R. Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry. 1997 Dec 9;36(49):15356–15362. doi: 10.1021/bi971153a. [DOI] [PubMed] [Google Scholar]
  3. Bucala R. MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J. 1996 Dec;10(14):1607–1613. doi: 10.1096/fasebj.10.14.9002552. [DOI] [PubMed] [Google Scholar]
  4. Chook Y. M., Gray J. V., Ke H., Lipscomb W. N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J Mol Biol. 1994 Jul 29;240(5):476–500. doi: 10.1006/jmbi.1994.1462. [DOI] [PubMed] [Google Scholar]
  5. David J. R. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966 Jul;56(1):72–77. doi: 10.1073/pnas.56.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Despommier D. D., Campbell W. C., Blair L. S. The in vivo and in vitro analysis of immunity to Trichinella spiralis in mice and rats. Parasitology. 1977 Feb;74(1):109–119. doi: 10.1017/s0031182000047570. [DOI] [PubMed] [Google Scholar]
  7. Doenhoff M., Bickle Q., Long E., Bain J., McGregor A. Factors affecting the acquisition of resistance against Schistosoma mansoni in the mouse. I. Demonstration of resistance to reinfection using a model system that involves perfusion of mice within three weeks of challenge. J Helminthol. 1978 Sep;52(3):173–186. doi: 10.1017/s0022149x00005344. [DOI] [PubMed] [Google Scholar]
  8. Kleemann R., Kapurniotu A., Frank R. W., Gessner A., Mischke R., Flieger O., Jüttner S., Brunner H., Bernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol. 1998 Jul 3;280(1):85–102. doi: 10.1006/jmbi.1998.1864. [DOI] [PubMed] [Google Scholar]
  9. Nakano T., Watarai H., Liu Y. C., Oyama Y., Mikayama T., Ishizaka K. Conversion of inactive glycosylation inhibiting factor to bioactive derivatives by modification of a SH group. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):202–207. doi: 10.1073/pnas.94.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pennock J. L., Wipasa J., Gordge M. P., Meyer D. J. Interaction of macrophage-migration-inhibitory factor with haematin. Biochem J. 1998 May 1;331(Pt 3):905–908. doi: 10.1042/bj3310905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rosengren E., Aman P., Thelin S., Hansson C., Ahlfors S., Björk P., Jacobsson L., Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett. 1997 Nov 3;417(1):85–88. doi: 10.1016/s0014-5793(97)01261-1. [DOI] [PubMed] [Google Scholar]
  12. Rosengren E., Bucala R., Aman P., Jacobsson L., Odh G., Metz C. N., Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med. 1996 Jan;2(1):143–149. [PMC free article] [PubMed] [Google Scholar]
  13. Subramanya H. S., Roper D. I., Dauter Z., Dodson E. J., Davies G. J., Wilson K. S., Wigley D. B. Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry. 1996 Jan 23;35(3):792–802. doi: 10.1021/bi951732k. [DOI] [PubMed] [Google Scholar]
  14. Sun H. W., Bernhagen J., Bucala R., Lolis E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5191–5196. doi: 10.1073/pnas.93.11.5191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suzuki M., Sugimoto H., Nakagawa A., Tanaka I., Nishihira J., Sakai M. Crystal structure of the macrophage migration inhibitory factor from rat liver. Nat Struct Biol. 1996 Mar;3(3):259–266. doi: 10.1038/nsb0396-259. [DOI] [PubMed] [Google Scholar]
  16. Swope M., Sun H. W., Blake P. R., Lolis E. Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor. EMBO J. 1998 Jul 1;17(13):3534–3541. doi: 10.1093/emboj/17.13.3534. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES