Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):533–539. doi: 10.1042/bj3350533

AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release.

I P Salt 1, G Johnson 1, S J Ashcroft 1, D G Hardie 1
PMCID: PMC1219813  PMID: 9794792

Abstract

The role of the AMP-activated protein kinase (AMPK) cascade in the glucose-sensitive pancreatic beta cell lines HIT-T15 and INS-1 was addressed. In both cell types, removal of glucose leads to a >5-fold activation of AMPK activity. Activation of AMPK was due to phosphorylation, since the effect was reversed by protein phosphatase treatment of the extracts, and was restored by re-addition of MgATP and the purified upstream kinase. When the effects of different concentrations of medium glucose were examined, insulin secretion and AMPK activity were inversely related, and varied over the same concentration range. The activation in response to glucose removal appeared to be due to changes in the concentration of the known regulators of the cascade, i.e. AMP and ATP, since AMPK activation was associated with a large increase in the cellular AMP/ATP ratio, and the two parameters varied over the same range of glucose concentrations. In late-passage HIT-T15 cells that had lost the glucose-dependent insulin secretion response, both AMPK activity and the AMP/ATP ratio also became insensitive to the extracellular glucose concentration. Treatment of INS-1 cells, but not HIT-T15 cells, with AICA riboside (5-aminoimidazole-4-carboxamide riboside) results in accumulation of the ribotide, ZMP (AICA riboside monophosphate), and activation of AMPK. AICA riboside treatment of INS-1 cells, and of isolated rat islets, had both inhibitory and stimulatory effects on insulin secretion. These results show that in beta cell lines the AMP-activated protein kinase, like its yeast homologue the SNF1 complex, can respond to the level of glucose in the medium, and may be involved in regulating insulin release.

Full Text

The Full Text of this article is available as a PDF (457.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkan A. G., Malaisse W. J. Insulinotropic action of AICA riboside. I. Insulin release by isolated islets and the perfused pancreas. Diabetes Res. 1994;25(1):13–23. [PubMed] [Google Scholar]
  2. Asfari M., Janjic D., Meda P., Li G., Halban P. A., Wollheim C. B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992 Jan;130(1):167–178. doi: 10.1210/endo.130.1.1370150. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft S. J. Protein phosphorylation and beta-cell function. Diabetologia. 1994 Sep;37 (Suppl 2):S21–S29. doi: 10.1007/BF00400822. [DOI] [PubMed] [Google Scholar]
  4. Bertrand G., Petit P., Bozem M., Henquin J. C. Membrane and intracellular effects of adenosine in mouse pancreatic beta-cells. Am J Physiol. 1989 Oct;257(4 Pt 1):E473–E478. doi: 10.1152/ajpendo.1989.257.4.E473. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Campbell I. L., Taylor K. W. Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Biochem J. 1982 Jun 15;204(3):689–696. doi: 10.1042/bj2040689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carling D., Clarke P. R., Zammit V. A., Hardie D. G. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem. 1989 Dec 8;186(1-2):129–136. doi: 10.1111/j.1432-1033.1989.tb15186.x. [DOI] [PubMed] [Google Scholar]
  8. Christie M. R., Ashcroft S. J. Substrates for cyclic AMP-dependent protein kinase in islets of Langerhans. Studies with forskolin and catalytic subunit. Biochem J. 1985 May 1;227(3):727–736. doi: 10.1042/bj2270727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen P., Alemany S., Hemmings B. A., Resink T. J., Strålfors P., Tung H. Y. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 1988;159:390–408. doi: 10.1016/0076-6879(88)59039-0. [DOI] [PubMed] [Google Scholar]
  10. Corkey B. E., Glennon M. C., Chen K. S., Deeney J. T., Matschinsky F. M., Prentki M. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem. 1989 Dec 25;264(36):21608–21612. [PubMed] [Google Scholar]
  11. Corton J. M., Gillespie J. G., Hardie D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol. 1994 Apr 1;4(4):315–324. doi: 10.1016/s0960-9822(00)00070-1. [DOI] [PubMed] [Google Scholar]
  12. Corton J. M., Gillespie J. G., Hawley S. A., Hardie D. G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. [DOI] [PubMed] [Google Scholar]
  13. Dale S., Wilson W. A., Edelman A. M., Hardie D. G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 1995 Mar 20;361(2-3):191–195. doi: 10.1016/0014-5793(95)00172-6. [DOI] [PubMed] [Google Scholar]
  14. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  15. Davies S. P., Helps N. R., Cohen P. T., Hardie D. G. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995 Dec 27;377(3):421–425. doi: 10.1016/0014-5793(95)01368-7. [DOI] [PubMed] [Google Scholar]
  16. Davies S. P., Sim A. T., Hardie D. G. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem. 1990 Jan 12;187(1):183–190. doi: 10.1111/j.1432-1033.1990.tb15293.x. [DOI] [PubMed] [Google Scholar]
  17. Frödin M., Sekine N., Roche E., Filloux C., Prentki M., Wollheim C. B., Van Obberghen E. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem. 1995 Apr 7;270(14):7882–7889. doi: 10.1074/jbc.270.14.7882. [DOI] [PubMed] [Google Scholar]
  18. Hardie D. G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821–855. doi: 10.1146/annurev.biochem.67.1.821. [DOI] [PubMed] [Google Scholar]
  19. Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
  20. Hawley S. A., Davison M., Woods A., Davies S. P., Beri R. K., Carling D., Hardie D. G. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996 Nov 1;271(44):27879–27887. doi: 10.1074/jbc.271.44.27879. [DOI] [PubMed] [Google Scholar]
  21. Hawley S. A., Selbert M. A., Goldstein E. G., Edelman A. M., Carling D., Hardie D. G. 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995 Nov 10;270(45):27186–27191. doi: 10.1074/jbc.270.45.27186. [DOI] [PubMed] [Google Scholar]
  22. Henin N., Vincent M. F., Gruber H. E., Van den Berghe G. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J. 1995 Apr;9(7):541–546. doi: 10.1096/fasebj.9.7.7737463. [DOI] [PubMed] [Google Scholar]
  23. Henin N., Vincent M. F., Van den Berghe G. Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta. 1996 Jun 4;1290(2):197–203. doi: 10.1016/0304-4165(96)00021-9. [DOI] [PubMed] [Google Scholar]
  24. Hillaire-Buys D., Chapal J., Bertrand G., Petit P., Loubatières-Mariani M. M. Purinergic receptors on insulin-secreting cells. Fundam Clin Pharmacol. 1994;8(2):117–127. doi: 10.1111/j.1472-8206.1994.tb00788.x. [DOI] [PubMed] [Google Scholar]
  25. Hughes S. J., Chalk J. G., Ashcroft S. J. Effect of secretagogues on cytosolic free Ca2+ and insulin release at different extracellular Ca2+ concentrations in the hamster clonal beta-cell line HIT-T15. Mol Cell Endocrinol. 1989 Aug;65(1-2):35–41. doi: 10.1016/0303-7207(89)90162-7. [DOI] [PubMed] [Google Scholar]
  26. Hutber C. A., Hardie D. G., Winder W. W. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997 Feb;272(2 Pt 1):E262–E266. doi: 10.1152/ajpendo.1997.272.2.E262. [DOI] [PubMed] [Google Scholar]
  27. Ismail N. A., El Denshary E. E., Montague W. Adenosine and the regulation of insulin secretion by isolated rat islets of Langerhans. Biochem J. 1977 May 15;164(2):409–413. doi: 10.1042/bj1640409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones P. M., Persaud S. J., Howell S. L. Insulin secretion and protein phosphorylation in PKC-depleted islets of Langerhans. Life Sci. 1992;50(11):761–767. doi: 10.1016/0024-3205(92)90180-w. [DOI] [PubMed] [Google Scholar]
  29. Kudo N., Barr A. J., Barr R. L., Desai S., Lopaschuk G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. doi: 10.1074/jbc.270.29.17513. [DOI] [PubMed] [Google Scholar]
  30. Liang Y., Matschinsky F. M. Content of CoA-esters in perifused rat islets stimulated by glucose and other fuels. Diabetes. 1991 Mar;40(3):327–333. doi: 10.2337/diab.40.3.327. [DOI] [PubMed] [Google Scholar]
  31. Louis N. A., Witters L. A. Glucose regulation of acetyl-CoA carboxylase in hepatoma and islet cells. J Biol Chem. 1992 Feb 5;267(4):2287–2293. [PubMed] [Google Scholar]
  32. Meglasson M. D., Matschinsky F. M. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3-4):163–214. doi: 10.1002/dmr.5610020301. [DOI] [PubMed] [Google Scholar]
  33. Merrill G. F., Kurth E. J., Hardie D. G., Winder W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997 Dec;273(6 Pt 1):E1107–E1112. doi: 10.1152/ajpendo.1997.273.6.E1107. [DOI] [PubMed] [Google Scholar]
  34. Molnár E., Váradi A., McIlhinney R. A., Ashcroft S. J. Identification of functional ionotropic glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett. 1995 Sep 11;371(3):253–257. doi: 10.1016/0014-5793(95)00890-l. [DOI] [PubMed] [Google Scholar]
  35. Moore F., Weekes J., Hardie D. G. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem. 1991 Aug 1;199(3):691–697. doi: 10.1111/j.1432-1033.1991.tb16172.x. [DOI] [PubMed] [Google Scholar]
  36. Persaud S. J., Jones P. M., Howell S. L. Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Commun. 1990 Dec 31;173(3):833–839. doi: 10.1016/s0006-291x(05)80862-9. [DOI] [PubMed] [Google Scholar]
  37. Persaud S. J., Wheeler-Jones C. P., Jones P. M. The mitogen-activated protein kinase pathway in rat islets of Langerhans: studies on the regulation of insulin secretion. Biochem J. 1996 Jan 1;313(Pt 1):119–124. doi: 10.1042/bj3130119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prentki M., Tornheim K., Corkey B. E. Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia. 1997 Jul;40 (Suppl 2):S32–S41. doi: 10.1007/s001250051395. [DOI] [PubMed] [Google Scholar]
  39. Rajan A. S., Aguilar-Bryan L., Nelson D. A., Yaney G. C., Hsu W. H., Kunze D. L., Boyd A. E., 3rd Ion channels and insulin secretion. Diabetes Care. 1990 Mar;13(3):340–363. doi: 10.2337/diacare.13.3.340. [DOI] [PubMed] [Google Scholar]
  40. Salt I., Celler J. W., Hawley S. A., Prescott A., Woods A., Carling D., Hardie D. G. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J. 1998 Aug 15;334(Pt 1):177–187. doi: 10.1042/bj3340177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Santerre R. F., Cook R. A., Crisel R. M., Sharp J. D., Schmidt R. J., Williams D. C., Wilson C. P. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4339–4343. doi: 10.1073/pnas.78.7.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sutton R., Peters M., McShane P., Gray D. W., Morris P. J. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 1986 Dec;42(6):689–691. doi: 10.1097/00007890-198612000-00022. [DOI] [PubMed] [Google Scholar]
  43. Unger R. H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science. 1991 Mar 8;251(4998):1200–1205. doi: 10.1126/science.2006409. [DOI] [PubMed] [Google Scholar]
  44. Vavvas D., Apazidis A., Saha A. K., Gamble J., Patel A., Kemp B. E., Witters L. A., Ruderman N. B. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997 May 16;272(20):13255–13261. doi: 10.1074/jbc.272.20.13255. [DOI] [PubMed] [Google Scholar]
  45. Vincent M. F., Marangos P. J., Gruber H. E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991 Oct;40(10):1259–1266. doi: 10.2337/diab.40.10.1259. [DOI] [PubMed] [Google Scholar]
  46. Wilson W. A., Hawley S. A., Hardie D. G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol. 1996 Nov 1;6(11):1426–1434. doi: 10.1016/s0960-9822(96)00747-6. [DOI] [PubMed] [Google Scholar]
  47. Winder W. W., Hardie D. G. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996 Feb;270(2 Pt 1):E299–E304. doi: 10.1152/ajpendo.1996.270.2.E299. [DOI] [PubMed] [Google Scholar]
  48. Woods A., Munday M. R., Scott J., Yang X., Carlson M., Carling D. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem. 1994 Jul 29;269(30):19509–19515. [PubMed] [Google Scholar]
  49. Young M. E., Radda G. K., Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett. 1996 Mar 11;382(1-2):43–47. doi: 10.1016/0014-5793(96)00129-9. [DOI] [PubMed] [Google Scholar]
  50. Zhang H. J., Walseth T. F., Robertson R. P. Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes. 1989 Jan;38(1):44–48. doi: 10.2337/diab.38.1.44. [DOI] [PubMed] [Google Scholar]
  51. Zhang S., Kim K. H. Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. J Endocrinol. 1995 Oct;147(1):33–41. doi: 10.1677/joe.0.1470033. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES