Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):619–630. doi: 10.1042/bj3350619

Increased bioactivation of dihaloalkanes in rat liver due to induction of class theta glutathione S-transferase T1-1.

P J Sherratt 1, M M Manson 1, A M Thomson 1, E A Hissink 1, G E Neal 1, P J van Bladeren 1, T Green 1, J D Hayes 1
PMCID: PMC1219824  PMID: 9794803

Abstract

A characteristic feature of the class Theta glutathione S-transferase (GST) T1-1 is its ability to activate dichloromethane and dibromoethane by catalysing the formation of mutagenic conjugates. The level of the GSTT1 subunit within tissues is an important determinant of susceptibility to the carcinogenic effects of these dihaloalkanes. In the present study it is demonstrated that hepatic GST activity towards these compounds can be elevated significantly in female and male Fischer-344 rats by feeding these animals on diets supplemented with cancer chemopreventive agents. Immunoblotting experiments showed that increased activity towards the dihaloalkanes is associated with elevated levels of the GSTT1 subunit in rat liver. Sex-specific effects were observed in the induction of GSTT1 protein. Amongst the chemopreventive agents tested, indole-3-carbinol proved to be the most potent inducer of hepatic GSTT1 in male rats (6.2-fold), whereas coumarin was the most potent inducer of this subunit in the livers of female rats (3. 5-fold). Phenobarbital showed significant induction of GSTT1 only in male rat liver and had little effect in female rat liver. Western blotting showed that class Alpha, Mu and Pi GST subunits are not co-ordinately induced with GSTT1, indicating that the expression of GSTT1 is determined, at least in part, by mechanisms distinct from those that regulate levels of other transferases. The increase in amount of hepatic GSTT1 protein was also reflected by an increase in the steady-state level of mRNA in response to treatment with chemopreventive agents and model inducers. Immunohistochemical detection of GSTT1 in rat liver supported the Western blotting data, but showed, in addition to cytoplasmic staining, significant nuclear localization of the enzyme in hepatocytes from some treated animals, including those fed on an oltipraz-containing diet. Significantly, the hepatic level of cytochrome P-450 2E1, an enzyme which offers a detoxification pathway for dihaloalkanes, was unchanged by the various inducing agents studied. It is concluded that the induction of GSTT1 by dietary components and its localization within cells are important factors that should be considered when assessing the risk dihaloalkanes pose to human health.

Full Text

The Full Text of this article is available as a PDF (590.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies. Drug Metab Dispos. 1976 Jul-Aug;4(4):357–361. [PubMed] [Google Scholar]
  2. Andersen M. E., Clewell H. J., 3rd, Gargas M. L., Smith F. A., Reitz R. H. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol. 1987 Feb;87(2):185–205. doi: 10.1016/0041-008x(87)90281-x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Ellis E. M., Judah D. J., Neal G. E., O'Connor T., Hayes J. D. Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors. Cancer Res. 1996 Jun 15;56(12):2758–2766. [PubMed] [Google Scholar]
  6. Graves R. J., Coutts C., Green T. Methylene chloride-induced DNA damage: an interspecies comparison. Carcinogenesis. 1995 Aug;16(8):1919–1926. doi: 10.1093/carcin/16.8.1919. [DOI] [PubMed] [Google Scholar]
  7. Green J. A., Carthew P., Heuillet E., Simpson J. L., Manson M. M. Cytokeratin expression during AFB1-induced carcinogenesis. Carcinogenesis. 1990 Jul;11(7):1175–1182. doi: 10.1093/carcin/11.7.1175. [DOI] [PubMed] [Google Scholar]
  8. Green T. Methylene chloride induced mouse liver and lung tumours: an overview of the role of mechanistic studies in human safety assessment. Hum Exp Toxicol. 1997 Jan;16(1):3–13. doi: 10.1177/0960327197016001021. [DOI] [PubMed] [Google Scholar]
  9. Guengerich F. P., Kim D. H., Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991 Mar-Apr;4(2):168–179. doi: 10.1021/tx00020a008. [DOI] [PubMed] [Google Scholar]
  10. Guengerich F. P., Thier R., Persmark M., Taylor J. B., Pemble S. E., Ketterer B. Conjugation of carcinogens by theta class glutathione s-transferases: mechanisms and relevance to variations in human risk. Pharmacogenetics. 1995;5(Spec No):S103–S107. doi: 10.1097/00008571-199512001-00010. [DOI] [PubMed] [Google Scholar]
  11. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  12. Hayes J. D., Gilligan D., Chapman B. J., Beckett G. J. Purification of human hepatic glutathione S-transferases and the development of a radioimmunoassay for their measurement in plasma. Clin Chim Acta. 1983 Oct 31;134(1-2):107–121. doi: 10.1016/0009-8981(83)90189-4. [DOI] [PubMed] [Google Scholar]
  13. Hayes J. D., Mantle T. J. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. doi: 10.1042/bj2330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  15. Hiratsuka A., Nishijima T., Okuda H., Ogura K., Watabe T. Rat liver theta-class glutathione S-transferases T1-1 and T2-2: their chromatographic, electrophoretic, immunochemical, and functional properties. Anal Biochem. 1997 Oct 15;252(2):229–237. doi: 10.1006/abio.1997.2316. [DOI] [PubMed] [Google Scholar]
  16. Hussey A. J., Hayes J. D. Human Mu-class glutathione S-transferases present in liver, skeletal muscle and testicular tissue. Biochim Biophys Acta. 1993 Nov 10;1203(1):131–141. doi: 10.1016/0167-4838(93)90047-u. [DOI] [PubMed] [Google Scholar]
  17. Jellinck P. H., Forkert P. G., Riddick D. S., Okey A. B., Michnovicz J. J., Bradlow H. L. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol. 1993 Mar 9;45(5):1129–1136. doi: 10.1016/0006-2952(93)90258-x. [DOI] [PubMed] [Google Scholar]
  18. Johnson J. A., Finn K. A., Siegel F. L. Tissue distribution of enzymic methylation of glutathione S-transferase and its effects on catalytic activity. Methylation of glutathione S-transferase 11-11 inhibits conjugating activity towards 1-chloro-2,4-dinitrobenzene. Biochem J. 1992 Feb 15;282(Pt 1):279–289. doi: 10.1042/bj2820279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim W., Gates K. S. Evidence for thiol-dependent production of oxygen radicals by 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (oltipraz) and 3H-1,2-dithiole-3-thione: possible relevance to the anticarcinogenic properties of 1,2-dithiole-3-thiones. Chem Res Toxicol. 1997 Mar;10(3):296–301. doi: 10.1021/tx9601667. [DOI] [PubMed] [Google Scholar]
  20. Kolm R. H., Danielson U. H., Zhang Y., Talalay P., Mannervik B. Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem J. 1995 Oct 15;311(Pt 2):453–459. doi: 10.1042/bj3110453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mainwaring G. W., Foster J. R., Green T. Nuclear and cellular immunolocalization of theta-class glutathione S-transferase GSTT1-1 in the liver and lung of the mouse. Biochem J. 1998 Jan 15;329(Pt 2):431–432. doi: 10.1042/bj3290431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mainwaring G. W., Williams S. M., Foster J. R., Tugwood J., Green T. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J. 1996 Aug 15;318(Pt 1):297–303. doi: 10.1042/bj3180297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manson M. M., Ball H. W., Barrett M. C., Clark H. L., Judah D. J., Williamson G., Neal G. E. Mechanism of action of dietary chemoprotective agents in rat liver: induction of phase I and II drug metabolizing enzymes and aflatoxin B1 metabolism. Carcinogenesis. 1997 Sep;18(9):1729–1738. doi: 10.1093/carcin/18.9.1729. [DOI] [PubMed] [Google Scholar]
  24. Manson M. M., Legg R. F., Watson J. V., Green J. A., Neal G. E. An examination of the relative resistances to aflatoxin B1 and susceptibilities to gamma-glutamyl p-phenylene diamine mustard of gamma-glutamyl transferase negative and positive cell lines. Carcinogenesis. 1981;2(7):661–670. doi: 10.1093/carcin/2.7.661. [DOI] [PubMed] [Google Scholar]
  25. Marnett L. J. Generation of mutagens during arachidonic acid metabolism. Cancer Metastasis Rev. 1994 Dec;13(3-4):303–308. doi: 10.1007/BF00666100. [DOI] [PubMed] [Google Scholar]
  26. McLeod R., Ellis E. M., Arthur J. R., Neal G. E., Judah D. J., Manson M. M., Hayes J. D. Protection conferred by selenium deficiency against aflatoxin B1 in the rat is associated with the hepatic expression of an aldo-keto reductase and a glutathione S-transferase subunit that metabolize the mycotoxin. Cancer Res. 1997 Oct 1;57(19):4257–4266. [PubMed] [Google Scholar]
  27. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meyer D. J., Harris J. M., Gilmore K. S., Coles B., Kensler T. W., Ketterer B. Quantitation of tissue- and sex-specific induction of rat GSH transferase subunits by dietary 1,2-dithiole-3-thiones. Carcinogenesis. 1993 Apr;14(4):567–572. doi: 10.1093/carcin/14.4.567. [DOI] [PubMed] [Google Scholar]
  29. Morita I., Schindler M., Regier M. K., Otto J. C., Hori T., DeWitt D. L., Smith W. L. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J Biol Chem. 1995 May 5;270(18):10902–10908. doi: 10.1074/jbc.270.18.10902. [DOI] [PubMed] [Google Scholar]
  30. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oinonen T., Lindros K. O. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J. 1998 Jan 1;329(Pt 1):17–35. doi: 10.1042/bj3290017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem. 1996 Jun 7;271(23):13422–13429. doi: 10.1074/jbc.271.23.13422. [DOI] [PubMed] [Google Scholar]
  33. Ploemen J. P., Wormhoudt L. W., Haenen G. R., Oudshoorn M. J., Commandeur J. N., Vermeulen N. P., de Waziers I., Beaune P. H., Watabe T., van Bladeren P. J. The use of human in vitro metabolic parameters to explore the risk assessment of hazardous compounds: the case of ethylene dibromide. Toxicol Appl Pharmacol. 1997 Mar;143(1):56–69. doi: 10.1006/taap.1996.8004. [DOI] [PubMed] [Google Scholar]
  34. Prestera T., Holtzclaw W. D., Zhang Y., Talalay P. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2965–2969. doi: 10.1073/pnas.90.7.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Primiano T., Gastel J. A., Kensler T. W., Sutter T. R. Isolation of cDNAs representing dithiolethione-responsive genes. Carcinogenesis. 1996 Nov;17(11):2297–2303. doi: 10.1093/carcin/17.11.2297. [DOI] [PubMed] [Google Scholar]
  36. Primiano T., Kensler T. W., Kuppusamy P., Zweier J. L., Sutter T. R. Induction of hepatic heme oxygenase-1 and ferritin in rats by cancer chemopreventive dithiolethiones. Carcinogenesis. 1996 Nov;17(11):2291–2296. doi: 10.1093/carcin/17.11.2291. [DOI] [PubMed] [Google Scholar]
  37. Ricci G., Caccuri A. M., Lo Bello M., Pastore A., Piemonte F., Federici G. Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem. 1994 May 1;218(2):463–465. doi: 10.1006/abio.1994.1209. [DOI] [PubMed] [Google Scholar]
  38. Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
  39. Rushmore T. H., Pickett C. B. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem. 1990 Aug 25;265(24):14648–14653. [PubMed] [Google Scholar]
  40. Sherratt P. J., Pulford D. J., Harrison D. J., Green T., Hayes J. D. Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse. Comparison of the tissue distribution of GST T1-1 with that of classes Alpha, Mu and Pi GST in human. Biochem J. 1997 Sep 15;326(Pt 3):837–846. doi: 10.1042/bj3260837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tew K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed] [Google Scholar]
  42. Thier R., Taylor J. B., Pemble S. E., Humphreys W. G., Persmark M., Ketterer B., Guengerich F. P. Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8576–8580. doi: 10.1073/pnas.90.18.8576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watabe T., Akamatsu K. Oxidative cleavage of the ethylenic linkage of stilbene by rabbit liver microsomes. Biochem Pharmacol. 1975 Feb 1;24(3):442–444. doi: 10.1016/0006-2952(75)90238-5. [DOI] [PubMed] [Google Scholar]
  44. Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985 Jan;45(1):1–8. [PubMed] [Google Scholar]
  45. van Bladeren P. J., Breimer D. D., Rotteveel-Smijs G. M., de Jong R. A., Buijs W., van der Gen A., Mohn G. R. The role of glutathione conjugation in the mutagenicity of 1,2-dibromoethane. Biochem Pharmacol. 1980 Nov 1;29(21):2975–2982. doi: 10.1016/0006-2952(80)90047-7. [DOI] [PubMed] [Google Scholar]
  46. van Iersel M. L., Henderson C. J., Walters D. G., Price R. J., Wolf C. R., Lake B. G. Metabolism of [3-14C] coumarin by human liver microsomes. Xenobiotica. 1994 Aug;24(8):795–803. doi: 10.3109/00498259409043279. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES