Abstract
Carba-NAD and pseudocarba-NAD are carbocyclic analogues of NAD+ in which a 2,3-dihydroxycyclopentane methanol replaces the beta-d-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ [Slama and Simmons (1988) Biochemistry 27, 183-193]. These carbocyclic NAD+ analogues, related to each other as diastereomers, have been tested as inhibitors of the intrinsic NAD+ glycohydrolase activity of human CD38, dog spleen NAD+ glycohydrolase, mouse CD38 and Aplysia californica cADP-ribose synthetase. Pseudocarba-NAD, the carbocyclic dinucleotide in which l-2,3-dihydroxycyclopentane methanol replaces the d-ribose of the nicotinamide riboside moiety of NAD+, was found to be the more potent inhibitor. Pseudocarba-NAD was shown to inhibit the intrinsic NAD+ glycohydrolase activity of human CD38 competitively, with Ki=148 microM determined for the recombinant extracellular protein domain and Ki=180 microM determined for the native protein expressed as a cell-surface enzyme on cultured Jurkat cells. Pseudocarba-NAD was shown to be a non-competitive inhibitor of the purified dog spleen NAD+ glycohydrolase, with Kis=47 miroM and Kii=198 microM. Neither pseudocarba-NAD nor carba-NAD inhibited mouse CD38 or Aplysia californica cADP-ribose synthetase significantly at concentrations up to 1 mM. The results underscore significant species differences in the sensitivity of these enzymes to inhibition, and indicate that pseudocarba-NAD will be useful as an inhibitor of the enzymic activity of human but not mouse CD38 in studies using cultured cells.
Full Text
The Full Text of this article is available as a PDF (411.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berthelier V., Tixier J. M., Muller-Steffner H., Schuber F., Deterre P. Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem J. 1998 Mar 15;330(Pt 3):1383–1390. doi: 10.1042/bj3301383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Deterre P., Gelman L., Gary-Gouy H., Arrieumerlou C., Berthelier V., Tixier J. M., Ktorza S., Goding J., Schmitt C., Bismuth G. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites. J Immunol. 1996 Aug 15;157(4):1381–1388. [PubMed] [Google Scholar]
- Gelman L., Deterre P., Gouy H., Boumsell L., Debré P., Bismuth G. The lymphocyte surface antigen CD38 acts as a nicotinamide adenine dinucleotide glycohydrolase in human T lymphocytes. Eur J Immunol. 1993 Dec;23(12):3361–3364. doi: 10.1002/eji.1830231245. [DOI] [PubMed] [Google Scholar]
- Glick D. L., Hellmich M. R., Beushausen S., Tempst P., Bayley H., Strumwasser F. Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 1991 Mar;2(3):211–218. doi: 10.1091/mbc.2.3.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada N., Santos-Argumedo L., Chang R., Grimaldi J. C., Lund F. E., Brannan C. I., Copeland N. G., Jenkins N. A., Heath A. W., Parkhouse R. M. Expression cloning of a cDNA encoding a novel murine B cell activation marker. Homology to human CD38. J Immunol. 1993 Sep 15;151(6):3111–3118. [PubMed] [Google Scholar]
- Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
- Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
- Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
- Lee H. C., Galione A., Walseth T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam Horm. 1994;48:199–257. doi: 10.1016/s0083-6729(08)60499-9. [DOI] [PubMed] [Google Scholar]
- Malavasi F., Funaro A., Alessio M., DeMonte L. B., Ausiello C. M., Dianzani U., Lanza F., Magrini E., Momo M., Roggero S. CD38: a multi-lineage cell activation molecule with a split personality. Int J Clin Lab Res. 1992;22(2):73–80. doi: 10.1007/BF02591400. [DOI] [PubMed] [Google Scholar]
- Malavasi F., Funaro A., Roggero S., Horenstein A., Calosso L., Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994 Mar;15(3):95–97. doi: 10.1016/0167-5699(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Muller-Steffner H. M., Augustin A., Schuber F. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem. 1996 Sep 27;271(39):23967–23972. doi: 10.1074/jbc.271.39.23967. [DOI] [PubMed] [Google Scholar]
- Muller-Steffner H. M., Augustin A., Schuber F. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem. 1996 Sep 27;271(39):23967–23972. doi: 10.1074/jbc.271.39.23967. [DOI] [PubMed] [Google Scholar]
- Muller-Steffner H. M., Malver O., Hosie L., Oppenheimer N. J., Schuber F. Slow-binding inhibition of NAD+ glycohydrolase by arabino analogues of beta-NAD. J Biol Chem. 1992 May 15;267(14):9606–9611. [PubMed] [Google Scholar]
- Muller-Steffner H., Slama J., Schuber F. Photodependent inhibition of bovine spleen NAD+ glycohydrolase by 8-azido carbocyclic analogs of NAD+. Biochem Biophys Res Commun. 1996 Nov 1;228(1):128–133. doi: 10.1006/bbrc.1996.1627. [DOI] [PubMed] [Google Scholar]
- Muller C. D., Tarnus C., Schuber F. Preparation of analogues of NAD+ as substrates for a sensitive fluorimetric assay of nucleotide pyrophosphatase. Biochem J. 1984 Nov 1;223(3):715–721. doi: 10.1042/bj2230715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slama J. T., Simmons A. M. Carbanicotinamide adenine dinucleotide: synthesis and enzymological properties of a carbocyclic analogue of oxidized nicotinamide adenine dinucleotide. Biochemistry. 1988 Jan 12;27(1):183–193. doi: 10.1021/bi00401a028. [DOI] [PubMed] [Google Scholar]
- Slama J. T., Simmons A. M. Inhibition of NAD glycohydrolase and ADP-ribosyl transferases by carbocyclic analogues of oxidized nicotinamide adenine dinucleotide. Biochemistry. 1989 Sep 19;28(19):7688–7694. doi: 10.1021/bi00445a025. [DOI] [PubMed] [Google Scholar]
- States D. J., Walseth T. F., Lee H. C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci. 1992 Dec;17(12):495–495. doi: 10.1016/0968-0004(92)90337-9. [DOI] [PubMed] [Google Scholar]
- Summerhill R. J., Jackson D. G., Galione A. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 1993 Dec 6;335(2):231–233. doi: 10.1016/0014-5793(93)80735-d. [DOI] [PubMed] [Google Scholar]
- Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
- ZATMAN L. J., KAPLAN N. O., COLOWICK S. P., CIOTTI M. M. Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J Biol Chem. 1954 Aug;209(2):453–466. [PubMed] [Google Scholar]
- Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]