Abstract
Sulphonylurea and imidazolinone herbicides act by inhibiting acetohydroxyacid synthase (AHAS; EC 4.1.3.18), the enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids. AHAS requires as cofactors thiamin diphosphate, a bivalent metal ion and, usually, FAD. Escherichia coli contains three isoenzymes and this study concerns isoenzyme II, the most herbicide-sensitive of the E. coli forms. A plasmid containing the large and small subunit genes of AHAS II was mutagenized using hydroxylamine and clones resistant to the sulphonylurea chlorimuron ethyl were selected. Three mutants were isolated; A26V, V99M and A108V. A26V has been described previously whereas the equivalent mutation of A108V has been reported in a herbicide-insensitive variant of yeast AHAS. The V99M mutation has not been discovered previously in AHAS from any source. The mutants were each over-expressed in E. coli, and the enzymes were purified to homogeneity. Some differences from wild type in the kinetic properties (kcat, Km and cofactor affinities) were observed, most notably a 28-fold decrease in the affinity for thiamin diphosphate of V99M. None of the mutants shows marked changes from the wild type in sensitivity to three imidazolinones, with the largest increase in the apparent inhibition constant being a factor of approximately 5. The A26V mutant is weakly resistant (6- to 20-fold) to six sulphonylureas, whereas stronger resistance is seen in V99M (20- to 250-fold) and A108V (35- to 420-fold). Resistance as a result of these mutations is consistent with a molecular model of the herbicide-binding site, which predicts that mutation of G249 might also confer herbicide insensitivity. Three G249 mutants were constructed, expressed and purified but all are inactive, apparently because they cannot bind FAD.
Full Text
The Full Text of this article is available as a PDF (525.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernasconi P., Woodworth A. R., Rosen B. A., Subramanian M. V., Siehl D. L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J Biol Chem. 1995 Jul 21;270(29):17381–17385. doi: 10.1074/jbc.270.29.17381. [DOI] [PubMed] [Google Scholar]
- Chang A. K., Duggleby R. G. Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J. 1997 Oct 1;327(Pt 1):161–169. doi: 10.1042/bj3270161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang A. K., Duggleby R. G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J. 1998 Aug 1;333(Pt 3):765–777. doi: 10.1042/bj3330765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang S. I., Kang M. K., Choi J. D., Namgoong S. K. Soluble overexpression in Escherichia coli, and purification and characterization of wild-type recombinant tobacco acetolactate synthase. Biochem Biophys Res Commun. 1997 May 29;234(3):549–553. doi: 10.1006/bbrc.1997.6678. [DOI] [PubMed] [Google Scholar]
- Diefenbach R. J., Duggleby R. G. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion. Biochem J. 1991 Jun 1;276(Pt 2):439–445. doi: 10.1042/bj2760439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duggleby R. G. Determination of inhibition constants, I50 values and the type of inhibition for enzyme-catalyzed reactions. Biochem Med Metab Biol. 1988 Oct;40(2):204–212. doi: 10.1016/0885-4505(88)90120-x. [DOI] [PubMed] [Google Scholar]
- Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
- Dumas R., Biou V., Douce R. Purification and characterization of a fusion protein of plant acetohydroxy acid synthase and acetohydroxy acid isomeroreductase. FEBS Lett. 1997 May 19;408(2):156–160. doi: 10.1016/s0014-5793(97)00410-9. [DOI] [PubMed] [Google Scholar]
- Halgand F., Vives F., Dumas R., Biou V., Andersen J., Andrieu J. P., Cantegril R., Gagnon J., Douce R., Forest E. Kinetic and mass spectrometric analyses of the interactions between plant acetohydroxy acid isomeroreductase and thiadiazole derivatives. Biochemistry. 1998 Apr 7;37(14):4773–4781. doi: 10.1021/bi9721389. [DOI] [PubMed] [Google Scholar]
- Harms C. T., Armour S. L., DiMaio J. J., Middlesteadt L. A., Murray D., Negrotto D. V., Thompson-Taylor H., Weymann K., Montoya A. L., Shillito R. D. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol Gen Genet. 1992 Jun;233(3):427–435. doi: 10.1007/BF00265440. [DOI] [PubMed] [Google Scholar]
- Hattori J., Brown D., Mourad G., Labbé H., Ouellet T., Sunohara G., Rutledge R., King J., Miki B. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet. 1995 Feb 20;246(4):419–425. doi: 10.1007/BF00290445. [DOI] [PubMed] [Google Scholar]
- Hill C. M., Pang S. S., Duggleby R. G. Purification of Escherichia coli acetohydroxyacid synthase isoenzyme II and reconstitution of active enzyme from its individual pure subunits. Biochem J. 1997 Nov 1;327(Pt 3):891–898. doi: 10.1042/bj3270891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibdah M., Bar-Ilan A., Livnah O., Schloss J. V., Barak Z., Chipman D. M. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry. 1996 Dec 17;35(50):16282–16291. doi: 10.1021/bi961588i. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawther R. P., Calhoun D. H., Adams C. W., Hauser C. A., Gray J., Hatfield G. W. Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1981 Feb;78(2):922–925. doi: 10.1073/pnas.78.2.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. Y., Townsend J., Tepperman J., Black M., Chui C. F., Mazur B., Dunsmuir P., Bedbrook J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 1988 May;7(5):1241–1248. doi: 10.1002/j.1460-2075.1988.tb02937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mourad G., Williams D., King J. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics. Planta. 1995;196(1):64–68. doi: 10.1007/BF00193218. [DOI] [PubMed] [Google Scholar]
- Muhitch M. J., Shaner D. L., Stidham M. A. Imidazolinones and acetohydroxyacid synthase from higher plants: properties of the enzyme from maize suspension culture cells and evidence for the binding of imazapyr to acetohydroxyacid synthase in vivo. Plant Physiol. 1987 Feb;83(2):451–456. doi: 10.1104/pp.83.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller Y. A., Schumacher G., Rudolph R., Schulz G. E. The refined structures of a stabilized mutant and of wild-type pyruvate oxidase from Lactobacillus plantarum. J Mol Biol. 1994 Apr 1;237(3):315–335. doi: 10.1006/jmbi.1994.1233. [DOI] [PubMed] [Google Scholar]
- Ott K. H., Kwagh J. G., Stockton G. W., Sidorov V., Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol. 1996 Oct 25;263(2):359–368. doi: 10.1006/jmbi.1996.0580. [DOI] [PubMed] [Google Scholar]
- Rathinasabapathi B., King J. Herbicide Resistance in Datura innoxia: Kinetic Characterization of Acetolactate Synthase from Wild-Type and Sulfonylurea-Resistant Cell Variants. Plant Physiol. 1991 May;96(1):255–261. doi: 10.1104/pp.96.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saari L. L., Cotterman J. C., Primiani M. M. Mechanism of Sulfonylurea Herbicide Resistance in the Broadleaf Weed, Kochia scoparia. Plant Physiol. 1990 May;93(1):55–61. doi: 10.1104/pp.93.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schloss J. V., Van Dyk D. E., Vasta J. F., Kutny R. M. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/pDU9. Biochemistry. 1985 Aug 27;24(18):4952–4959. doi: 10.1021/bi00339a034. [DOI] [PubMed] [Google Scholar]
- Shaner D. L., Anderson P. C., Stidham M. A. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 1984 Oct;76(2):545–546. doi: 10.1104/pp.76.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Subramanian M. V., Hung H. Y., Dias J. M., Miner V. W., Butler J. H., Jachetta J. J. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 1990 Sep;94(1):239–244. doi: 10.1104/pp.94.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szamosi I. T., Shaner D. L., Singh B. K. Inhibition of Threonine Dehydratase Is Herbicidal. Plant Physiol. 1994 Dec;106(4):1257–1260. doi: 10.1104/pp.106.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenbach V. A., Teaney P. W., Hanna W. S., Rayner D. R., Schloss J. V. Herbicidal Activity of an Isopropylmalate Dehydrogenase Inhibitor. Plant Physiol. 1994 Sep;106(1):321–328. doi: 10.1104/pp.106.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie Q., Jiménez A. Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1996 Apr 1;137(2-3):165–168. doi: 10.1111/j.1574-6968.1996.tb08100.x. [DOI] [PubMed] [Google Scholar]
- Yadav N., McDevitt R. E., Benard S., Falco S. C. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4418–4422. doi: 10.1073/pnas.83.12.4418. [DOI] [PMC free article] [PubMed] [Google Scholar]
