Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 1;335(Pt 3):671–679. doi: 10.1042/bj3350671

Inositol hexakisphosphate in Schizosaccharomyces pombe: synthesis from Ins(1,4,5)P3 and osmotic regulation.

P P Ongusaha 1, P J Hughes 1, J Davey 1, R H Michell 1
PMCID: PMC1219831  PMID: 9794810

Abstract

Schizosaccharomyces pombe extracts synthesize InsP6 (myo-inositol hexaphosphate) from Ins(1,4,5)P3 plus ATP. An S. pombe soluble fraction converts Ins(1,4,5)P3 into Ins(1,4,5,6)P4 and Ins(1,3,4, 5)P4, in a constant ratio of approximately 5:1, and thence to Ins(1, 3,4,5,6)P5 and InsP6. We have purified a soluble Mg2+-dependent kinase of molecular mass approximately 41 kDa that makes Ins(1,4,5, 6)P4 and Ins(1,3,4,5)P4 in the same ratio and also converts Ins(1,4, 5,6)P4 or Ins(1,3,4,5)P4 into Ins(1,3,4,5,6)P5 and InsP6. Of InsP3 isomers other than Ins(1,4,5)P3, only the non-biological molecule Ins(1,4,6)P3 potently 'competed' with all steps in conversion of Ins(1,4,5)P3 into InsP6. Examination of molecular graphics representations allowed us to draw tentative conclusions about the environment needed for an hydroxyl group to be phosphorylated by this kinase and to predict successfully that the purified kinase would phosphorylate the 5-hydroxyl of Ins(1,4,6)P3. S. pombe that have been cultured with [3H]inositol contains a variety of 3H-labelled inositol polyphosphates, with Ins(1,4,5)P3 and InsP6 the most prominent, and the InsP6 concentration quickly increases in hyper-osmotically stressed S. pombe. This yeast therefore contains InsP6 and Ins(1,4,5)P3 as normal constituents, makes more InsP6 when hyper-osmotically stressed and contains a versatile inositol polyphosphate kinase that synthesizes InsP6 from Ins(1,4,5)P3.

Full Text

The Full Text of this article is available as a PDF (856.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdullah M., Hughes P. J., Craxton A., Gigg R., Desai T., Marecek J. F., Prestwich G. D., Shears S. B. Purification and characterization of inositol-1,3,4-trisphosphate 5/6-kinase from rat liver using an inositol hexakisphosphate affinity column. J Biol Chem. 1992 Nov 5;267(31):22340–22345. [PubMed] [Google Scholar]
  2. Ali N., Duden R., Bembenek M. E., Shears S. B. The interaction of coatomer with inositol polyphosphates is conserved in Saccharomyces cerevisiae. Biochem J. 1995 Aug 15;310(Pt 1):279–284. doi: 10.1042/bj3100279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andoh T., Yoko T., Matsui Y., Toh A. Molecular cloning of the plc1+ gene of Schizosaccharomyces pombe, which encodes a putative phosphoinositide-specific phospholipase C. Yeast. 1995 Feb;11(2):179–185. doi: 10.1002/yea.320110209. [DOI] [PubMed] [Google Scholar]
  4. Belde P. J., Vossen J. H., Borst-Pauwels G. W., Theuvenet A. P. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEBS Lett. 1993 May 24;323(1-2):113–118. doi: 10.1016/0014-5793(93)81460-h. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  7. Calvert C. M., Sanders D. Inositol trisphosphate-dependent and -independent Ca2+ mobilization pathways at the vacuolar membrane of Candida albicans. J Biol Chem. 1995 Mar 31;270(13):7272–7280. doi: 10.1074/jbc.270.13.7272. [DOI] [PubMed] [Google Scholar]
  8. Communi D., Vanweyenberg V., Erneux C. Molecular study and regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase. Cell Signal. 1995 Sep;7(7):643–650. doi: 10.1016/0898-6568(95)00035-n. [DOI] [PubMed] [Google Scholar]
  9. Creba J. A., Downes C. P., Hawkins P. T., Brewster G., Michell R. H., Kirk C. J. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J. 1983 Jun 15;212(3):733–747. doi: 10.1042/bj2120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunningham K. W., Fink G. R. Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol. 1994 Nov;196:157–166. doi: 10.1242/jeb.196.1.157. [DOI] [PubMed] [Google Scholar]
  11. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  12. Divecha N., Irvine R. F. Phospholipid signaling. Cell. 1995 Jan 27;80(2):269–278. doi: 10.1016/0092-8674(95)90409-3. [DOI] [PubMed] [Google Scholar]
  13. Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., Michell R. H. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature. 1997 Nov 13;390(6656):187–192. doi: 10.1038/36613. [DOI] [PubMed] [Google Scholar]
  14. Drøbak B. K., Watkins P. A., Chattaway J. A., Roberts K., Dawson A. P. Metabolism of Inositol(1,4,5)trisphosphate by a Soluble Enzyme Fraction from Pea (Pisum sativum) Roots. Plant Physiol. 1991 Feb;95(2):412–419. doi: 10.1104/pp.95.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Estevez F., Pulford D., Stark M. J., Carter A. N., Downes C. P. Inositol trisphosphate metabolism in Saccharomyces cerevisiae: identification, purification and properties of inositol 1,4,5-trisphosphate 6-kinase. Biochem J. 1994 Sep 15;302(Pt 3):709–716. doi: 10.1042/bj3020709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Flick J. S., Thorner J. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Sep;13(9):5861–5876. doi: 10.1128/mcb.13.9.5861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukuda M., Mikoshiba K. The function of inositol high polyphosphate binding proteins. Bioessays. 1997 Jul;19(7):593–603. doi: 10.1002/bies.950190710. [DOI] [PubMed] [Google Scholar]
  18. Gadd G. M., Foster S. A. Metabolism of inositol 1,4,5-trisphosphate in Candida albicans: significance as a precursor of inositol polyphosphates and in signal transduction during the dimorphic transition from yeast cells to germ tubes. Microbiology. 1997 Feb;143(Pt 2):437–448. doi: 10.1099/00221287-143-2-437. [DOI] [PubMed] [Google Scholar]
  19. Hawkins P. T., Stephens L. R., Piggott J. R. Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation. J Biol Chem. 1993 Feb 15;268(5):3374–3383. [PubMed] [Google Scholar]
  20. Hughes P. J., Kirk C. J., Michell R. H. Inhibition of porcine brain inositol 1,3,4-trisphosphate kinase by inositol polyphosphates, other polyol phosphates, polyanions and polycations. Biochim Biophys Acta. 1994 Aug 11;1223(1):57–70. doi: 10.1016/0167-4889(94)90073-6. [DOI] [PubMed] [Google Scholar]
  21. Hughes P. J., Michell R. H. Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol. 1993 Jun;3(3):383–400. doi: 10.1016/0959-4388(93)90132-i. [DOI] [PubMed] [Google Scholar]
  22. Irvine R., Cullen P. Inositol phosphates - whither bound? Intracellular signalling. Curr Biol. 1996 May 1;6(5):537–540. doi: 10.1016/s0960-9822(02)00536-5. [DOI] [PubMed] [Google Scholar]
  23. Lakin-Thomas P. L. Effects of inositol starvation on the levels of inositol phosphates and inositol lipids in Neurospora crassa. Biochem J. 1993 Jun 15;292(Pt 3):805–811. doi: 10.1042/bj2920805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Larsson O., Barker C. J., Sjöholm A., Carlqvist H., Michell R. H., Bertorello A., Nilsson T., Honkanen R. E., Mayr G. W., Zwiller J. Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science. 1997 Oct 17;278(5337):471–474. doi: 10.1126/science.278.5337.471. [DOI] [PubMed] [Google Scholar]
  25. Menniti F. S., Oliver K. G., Putney J. W., Jr, Shears S. B. Inositol phosphates and cell signaling: new views of InsP5 and InsP6. Trends Biochem Sci. 1993 Feb;18(2):53–56. doi: 10.1016/0968-0004(93)90053-p. [DOI] [PubMed] [Google Scholar]
  26. Michell R. H. The multiplying roles of inositol lipids and phosphates in cell control processes. Essays Biochem. 1997;32:31–47. [PubMed] [Google Scholar]
  27. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  28. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  29. Paidhungat M., Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol. 1997 Nov;17(11):6339–6347. doi: 10.1128/mcb.17.11.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robinson K. S., Wheals A. E., Rose A. H., Dickinson J. R. Unusual inositol triphosphate metabolism in yeast. Microbiology. 1996 Jun;142(Pt 6):1333–1334. doi: 10.1099/13500872-142-6-1333. [DOI] [PubMed] [Google Scholar]
  31. Sasakawa N., Sharif M., Hanley M. R. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol. 1995 Jul 17;50(2):137–146. doi: 10.1016/0006-2952(95)00059-9. [DOI] [PubMed] [Google Scholar]
  32. Schomerus C., Küntzel H. CDC25-dependent induction of inositol 1,4,5-trisphosphate and diacylglycerol in Saccharomyces cerevisiae by nitrogen. FEBS Lett. 1992 Aug 3;307(3):249–252. doi: 10.1016/0014-5793(92)80688-d. [DOI] [PubMed] [Google Scholar]
  33. Shears S. B. The pathway of myo-inositol 1,3,4-trisphosphate phosphorylation in liver. Identification of myo-inositol 1,3,4-trisphosphate 6-kinase, myo-inositol 1,3,4-trisphosphate 5-kinase, and myo-inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem. 1989 Nov 25;264(33):19879–19886. [PubMed] [Google Scholar]
  34. Srinivasan S., Seaman M., Nemoto Y., Daniell L., Suchy S. F., Emr S., De Camilli P., Nussbaum R. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol. 1997 Dec;74(4):350–360. [PubMed] [Google Scholar]
  35. Stephens L. R., Jackson T. R., Hawkins P. T. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta. 1993 Oct 7;1179(1):27–75. doi: 10.1016/0167-4889(93)90072-w. [DOI] [PubMed] [Google Scholar]
  36. Stolz L. E., Huynh C. V., Thorner J., York J. D. Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1715–1729. doi: 10.1093/genetics/148.4.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stolz L. E., Kuo W. J., Longchamps J., Sekhon M. K., York J. D. INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J Biol Chem. 1998 May 8;273(19):11852–11861. doi: 10.1074/jbc.273.19.11852. [DOI] [PubMed] [Google Scholar]
  38. Stuart J. A., Hughes P. J., Kirk C. J., Davey J., Michell R. H. The involvement of inositol lipids and phosphates in signalling in the fission yeast Schizosaccharomyces pombe. Biochem Soc Trans. 1995 May;23(2):223S–223S. doi: 10.1042/bst023223s. [DOI] [PubMed] [Google Scholar]
  39. Toker A., Cantley L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997 Jun 12;387(6634):673–676. doi: 10.1038/42648. [DOI] [PubMed] [Google Scholar]
  40. Whiteford C. C., Brearley C. A., Ulug E. T. Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem J. 1997 May 1;323(Pt 3):597–601. doi: 10.1042/bj3230597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson M. P., Majerus P. W. Characterization of a cDNA encoding Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase. Biochem Biophys Res Commun. 1997 Mar 27;232(3):678–681. doi: 10.1006/bbrc.1997.6355. [DOI] [PubMed] [Google Scholar]
  42. Wilson M. P., Majerus P. W. Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J Biol Chem. 1996 May 17;271(20):11904–11910. doi: 10.1074/jbc.271.20.11904. [DOI] [PubMed] [Google Scholar]
  43. Yamazoe M., Shirahige K., Rashid M. B., Kaneko Y., Nakayama T., Ogasawara N., Yoshikawa H. A protein which binds preferentially to single-stranded core sequence of autonomously replicating sequence is essential for respiratory function in mitochondrial of Saccharomyces cerevisiae. J Biol Chem. 1994 May 27;269(21):15244–15252. [PubMed] [Google Scholar]
  44. Yoko-o T., Kato H., Matsui Y., Takenawa T., Toh-e A. Isolation and characterization of temperature-sensitive plc1 mutants of the yeast Saccharomyces cerevisiae. Mol Gen Genet. 1995 Apr 20;247(2):148–156. doi: 10.1007/BF00705644. [DOI] [PubMed] [Google Scholar]
  45. de Tiani M, Torgler CN, Meldrum E. Phospholipases in yeast. Semin Cell Dev Biol. 1997 Jun;8(3):333–338. doi: 10.1006/scdb.1997.0155. [DOI] [PubMed] [Google Scholar]
  46. van Haastert P. J., van Dijken P. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium. FEBS Lett. 1997 Jun 23;410(1):39–43. doi: 10.1016/s0014-5793(97)00415-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES