Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001

Arginine metabolism: nitric oxide and beyond.

G Wu 1, S M Morris Jr 1
PMCID: PMC1219836  PMID: 9806879

Abstract

Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes.

Full Text

The Full Text of this article is available as a PDF (493.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abruzzese F., Greco M., Perlino E., Doonan S., Marra E. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat. FEBS Lett. 1995 Jun 12;366(2-3):170–172. doi: 10.1016/0014-5793(95)00518-e. [DOI] [PubMed] [Google Scholar]
  2. Albina J. E., Abate J. A., Mastrofrancesco B. Role of ornithine as a proline precursor in healing wounds. J Surg Res. 1993 Jul;55(1):97–102. doi: 10.1006/jsre.1993.1114. [DOI] [PubMed] [Google Scholar]
  3. Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
  4. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed] [Google Scholar]
  5. Albina J. E. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 1995 Dec;58(6):643–649. doi: 10.1002/jlb.58.6.643. [DOI] [PubMed] [Google Scholar]
  6. Aral B., Schlenzig J. S., Liu G., Kamoun P. Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. C R Acad Sci III. 1996 Mar;319(3):171–178. [PubMed] [Google Scholar]
  7. Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 1986 Mar-Apr;10(2):227–238. doi: 10.1177/0148607186010002227. [DOI] [PubMed] [Google Scholar]
  9. Basch J. J., Wickham E. D., Farrell H. M., Jr Arginase in lactating bovine mammary glands: implications in proline synthesis. J Dairy Sci. 1997 Dec;80(12):3241–3248. doi: 10.3168/jds.S0022-0302(97)76298-2. [DOI] [PubMed] [Google Scholar]
  10. Baydoun A. R., Mann G. E. Selective targeting of nitric oxide synthase inhibitors to system y+ in activated macrophages. Biochem Biophys Res Commun. 1994 Apr 29;200(2):726–731. doi: 10.1006/bbrc.1994.1511. [DOI] [PubMed] [Google Scholar]
  11. Berger F. G., Szymanski P., Read E., Watson G. Androgen-regulated ornithine decarboxylase mRNAs of mouse kidney. J Biol Chem. 1984 Jun 25;259(12):7941–7946. [PubMed] [Google Scholar]
  12. Bergman E. N., Heitmann R. N. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc. 1978 Apr;37(5):1228–1232. [PubMed] [Google Scholar]
  13. Berthold H. K., Reeds P. J., Klein P. D. Isotopic evidence for the differential regulation of arginine and proline synthesis in man. Metabolism. 1995 Apr;44(4):466–473. doi: 10.1016/0026-0495(95)90053-5. [DOI] [PubMed] [Google Scholar]
  14. Blachier F., Darcy-Vrillon B., Sener A., Duée P. H., Malaisse W. J. Arginine metabolism in rat enterocytes. Biochim Biophys Acta. 1991 May 17;1092(3):304–310. doi: 10.1016/s0167-4889(97)90005-7. [DOI] [PubMed] [Google Scholar]
  15. Blachier F., M'Rabet-Touil H., Posho L., Darcy-Vrillon B., Duée P. H. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem. 1993 Aug 15;216(1):109–117. doi: 10.1111/j.1432-1033.1993.tb18122.x. [DOI] [PubMed] [Google Scholar]
  16. Blachier F., M'Rabet-Touil H., Posho L., Morel M. T., Bernard F., Darcy-Vrillon B., Duée P. H. Polyamine metabolism in enterocytes isolated from newborn pigs. Biochim Biophys Acta. 1992 Dec 15;1175(1):21–26. doi: 10.1016/0167-4889(92)90005-v. [DOI] [PubMed] [Google Scholar]
  17. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. doi: 10.1042/bj2840015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bogle R. G., MacAllister R. J., Whitley G. S., Vallance P. Induction of NG-monomethyl-L-arginine uptake: a mechanism for differential inhibition of NO synthases? Am J Physiol. 1995 Sep;269(3 Pt 1):C750–C756. doi: 10.1152/ajpcell.1995.269.3.C750. [DOI] [PubMed] [Google Scholar]
  19. Bogle R. G., Moncada S., Pearson J. D., Mann G. E. Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial cell L-arginine transporter. Br J Pharmacol. 1992 Apr;105(4):768–770. doi: 10.1111/j.1476-5381.1992.tb09053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Boon L., Blommaart P. J., Meijer A. J., Lamers W. H., Schoolwerth A. C. Acute acidosis inhibits liver amino acid transport: no primary role for the urea cycle in acid-base balance. Am J Physiol. 1994 Dec;267(6 Pt 2):F1015–F1020. doi: 10.1152/ajprenal.1994.267.6.F1015. [DOI] [PubMed] [Google Scholar]
  21. Boon L., Blommaart P. J., Meijer A. J., Lamers W. H., Schoolwerth A. C. Response of hepatic amino acid consumption to chronic metabolic acidosis. Am J Physiol. 1996 Jul;271(1 Pt 2):F198–F202. doi: 10.1152/ajprenal.1996.271.1.F198. [DOI] [PubMed] [Google Scholar]
  22. Bouby N., Hassler C., Parvy P., Bankir L. Renal synthesis of arginine in chronic renal failure: in vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney Int. 1993 Oct;44(4):676–683. doi: 10.1038/ki.1993.300. [DOI] [PubMed] [Google Scholar]
  23. Boucher J. L., Genet A., Vadon S., Delaforge M., Henry Y., Mansuy D. Cytochrome P450 catalyzes the oxidation of N omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun. 1992 Sep 16;187(2):880–886. doi: 10.1016/0006-291x(92)91279-y. [DOI] [PubMed] [Google Scholar]
  24. Boucher J. L., Genet A., Vadon S., Delaforge M., Mansuy D. Formation of nitrogen oxides and citrulline upon oxidation of N omega-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun. 1992 May 15;184(3):1158–1164. doi: 10.1016/s0006-291x(05)80004-x. [DOI] [PubMed] [Google Scholar]
  25. Bradford N. M., McGivan J. D. Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett. 1980 May 5;113(2):294–298. doi: 10.1016/0014-5793(80)80612-0. [DOI] [PubMed] [Google Scholar]
  26. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  27. Buga G. M., Singh R., Pervin S., Rogers N. E., Schmitz D. A., Jenkinson C. P., Cederbaum S. D., Ignarro L. J. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol. 1996 Nov;271(5 Pt 2):H1988–H1998. doi: 10.1152/ajpheart.1996.271.5.H1988. [DOI] [PubMed] [Google Scholar]
  28. Campbell J. W. Mitochondrial ammonia metabolism and the proton-neutral theory of hepatic ammonia detoxication. J Exp Zool. 1997 Aug 1;278(5):308–321. doi: 10.1002/(sici)1097-010x(19970801)278:5<308::aid-jez5>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  29. Castillo L., Beaumier L., Ajami A. M., Young V. R. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11460–11465. doi: 10.1073/pnas.93.21.11460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Castillo L., Chapman T. E., Sanchez M., Yu Y. M., Burke J. F., Ajami A. M., Vogt J., Young V. R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7749–7753. doi: 10.1073/pnas.90.16.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Castillo L., Chapman T. E., Yu Y. M., Ajami A., Burke J. F., Young V. R. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol. 1993 Oct;265(4 Pt 1):E532–E539. doi: 10.1152/ajpendo.1993.265.4.E532. [DOI] [PubMed] [Google Scholar]
  32. Castillo L., DeRojas-Walker T., Yu Y. M., Sanchez M., Chapman T. E., Shannon D., Tannenbaum S., Burke J. F., Young V. R. Whole body arginine metabolism and nitric oxide synthesis in newborns with persistent pulmonary hypertension. Pediatr Res. 1995 Jul;38(1):17–24. doi: 10.1203/00006450-199507000-00004. [DOI] [PubMed] [Google Scholar]
  33. Castillo L., Sánchez M., Vogt J., Chapman T. E., DeRojas-Walker T. C., Tannenbaum S. R., Ajami A. M., Young V. R. Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis. Am J Physiol. 1995 Feb;268(2 Pt 1):E360–E367. doi: 10.1152/ajpendo.1995.268.2.E360. [DOI] [PubMed] [Google Scholar]
  34. Cendan J. C., Topping D. L., Pruitt J., Snowdy S., Copeland E. M., 3rd, Lind D. S. Inflammatory mediators stimulate arginine transport and arginine-derived nitric oxide production in a murine breast cancer cell line. J Surg Res. 1996 Feb 1;60(2):284–288. doi: 10.1006/jsre.1996.0044. [DOI] [PubMed] [Google Scholar]
  35. Chen F. Y., Lee T. J. Arginine synthesis from citrulline in perivascular nerves of cerebral artery. J Pharmacol Exp Ther. 1995 May;273(2):895–901. [PubMed] [Google Scholar]
  36. Cherel Y., Attaix D., Rosolowska-Huszcz D., Belkhou R., Robin J. P., Arnal M., Le Maho Y. Whole-body and tissue protein synthesis during brief and prolonged fasting in the rat. Clin Sci (Lond) 1991 Nov;81(5):611–619. doi: 10.1042/cs0810611. [DOI] [PubMed] [Google Scholar]
  37. Cheung C. W., Cohen N. S., Raijman L. Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J Biol Chem. 1989 Mar 5;264(7):4038–4044. [PubMed] [Google Scholar]
  38. Christopherson K. S., Bredt D. S. Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest. 1997 Nov 15;100(10):2424–2429. doi: 10.1172/JCI119783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Clark J. H., Derrig R. G., Davis C. L., Spires H. R. Metabolism of arginine and ornithine in the cow and rabbit mammary tissue. J Dairy Sci. 1975 Dec;58(12):1808–1813. doi: 10.3168/jds.S0022-0302(75)84791-6. [DOI] [PubMed] [Google Scholar]
  40. Currie G. A., Gyure L., Cifuentes L. Microenvironmental arginine depletion by macrophages in vivo. Br J Cancer. 1979 Jun;39(6):613–620. doi: 10.1038/bjc.1979.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Curthoys N. P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. [DOI] [PubMed] [Google Scholar]
  42. Daghigh F., Fukuto J. M., Ash D. E. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):174–180. doi: 10.1006/bbrc.1994.1909. [DOI] [PubMed] [Google Scholar]
  43. Davis P. K., Wu G. Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol B Biochem Mol Biol. 1998 Mar;119(3):527–537. doi: 10.1016/s0305-0491(98)00014-5. [DOI] [PubMed] [Google Scholar]
  44. Davis S. R., Bickerstaffe R., Hart D. S. Amino acid uptake by the mammary gland of the lactating ewe. Aust J Biol Sci. 1978 Apr;31(2):123–132. doi: 10.1071/bi9780123. [DOI] [PubMed] [Google Scholar]
  45. Davis T. A., Fiorotto M. L., Reeds P. J. Amino acid compositions of body and milk protein change during the suckling period in rats. J Nutr. 1993 May;123(5):947–956. doi: 10.1093/jn/123.5.947. [DOI] [PubMed] [Google Scholar]
  46. Davis T. A., Nguyen H. V., Garcia-Bravo R., Fiorotto M. L., Jackson E. M., Lewis D. S., Lee D. R., Reeds P. J. Amino acid composition of human milk is not unique. J Nutr. 1994 Jul;124(7):1126–1132. doi: 10.1093/jn/124.7.1126. [DOI] [PubMed] [Google Scholar]
  47. De Jonge W. J., Dingemanse M. A., de Boer P. A., Lamers W. H., Moorman A. F. Arginine-metabolizing enzymes in the developing rat small intestine. Pediatr Res. 1998 Apr;43(4 Pt 1):442–451. doi: 10.1203/00006450-199804000-00002. [DOI] [PubMed] [Google Scholar]
  48. DeGeorge G. L., Heck D. E., Laskin J. D. Arginine metabolism in keratinocytes and macrophages during nitric oxide biosynthesis: multiple modes of action of nitric oxide synthase inhibitors. Biochem Pharmacol. 1997 Jul 1;54(1):103–112. doi: 10.1016/s0006-2952(97)00144-5. [DOI] [PubMed] [Google Scholar]
  49. Deshmukh D. R., Shope T. C. Arginine requirement and ammonia toxicity in ferrets. J Nutr. 1983 Aug;113(8):1664–1667. doi: 10.1093/jn/113.8.1664. [DOI] [PubMed] [Google Scholar]
  50. Deshmukh D. R., Shope T. C. Arginine requirement and ammonia toxicity in ferrets. J Nutr. 1983 Aug;113(8):1664–1667. doi: 10.1093/jn/113.8.1664. [DOI] [PubMed] [Google Scholar]
  51. Devés R., Boyd C. A. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998 Apr;78(2):487–545. doi: 10.1152/physrev.1998.78.2.487. [DOI] [PubMed] [Google Scholar]
  52. Dhanakoti S. N., Brosnan J. T., Brosnan M. E., Herzberg G. R. Net renal arginine flux in rats is not affected by dietary arginine or dietary protein intake. J Nutr. 1992 May;122(5):1127–1134. doi: 10.1093/jn/122.5.1127. [DOI] [PubMed] [Google Scholar]
  53. Dhanakoti S. N., Brosnan J. T., Herzberg G. R., Brosnan M. E. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol. 1990 Sep;259(3 Pt 1):E437–E442. doi: 10.1152/ajpendo.1990.259.3.E437. [DOI] [PubMed] [Google Scholar]
  54. Dhanakoti S. N., Brosnan M. E., Herzberg G. R., Brosnan J. T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. doi: 10.1042/bj2820369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Durante W., Liao L., Schafer A. I. Differential regulation of L-arginine transport and inducible NOS in cultured vascular smooth muscle cells. Am J Physiol. 1995 Mar;268(3 Pt 2):H1158–H1164. doi: 10.1152/ajpheart.1995.268.3.H1158. [DOI] [PubMed] [Google Scholar]
  56. Edmonds M. S., Lowry K. R., Baker D. H. Urea cycle metabolism: effects of supplemental ornithine or citrulline on performance, tissue amino acid concentrations and enzymatic activity in young pigs fed arginine-deficient diets. J Anim Sci. 1987 Sep;65(3):706–716. doi: 10.2527/jas1987.653706x. [DOI] [PubMed] [Google Scholar]
  57. Featherston W. R., Rogers Q. R., Freedland R. A. Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol. 1973 Jan;224(1):127–129. doi: 10.1152/ajplegacy.1973.224.1.127. [DOI] [PubMed] [Google Scholar]
  58. Ferber S., Ciechanover A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature. 1987 Apr 23;326(6115):808–811. doi: 10.1038/326808a0. [DOI] [PubMed] [Google Scholar]
  59. Feron O., Saldana F., Michel J. B., Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem. 1998 Feb 6;273(6):3125–3128. doi: 10.1074/jbc.273.6.3125. [DOI] [PubMed] [Google Scholar]
  60. Flodström M., Morris S. M., Jr, Eizirik D. L. Role of the citrulline-nitric oxide cycle in the functional response of adult human and rodent pancreatic islets to cytokines. Cytokine. 1996 Aug;8(8):642–650. doi: 10.1006/cyto.1996.0086. [DOI] [PubMed] [Google Scholar]
  61. Flodström M., Niemann A., Bedoya F. J., Morris S. M., Jr, Eizirik D. L. Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic beta-cells: induction of argininosuccinate synthetase by cytokines. Endocrinology. 1995 Aug;136(8):3200–3206. doi: 10.1210/endo.136.8.7628352. [DOI] [PubMed] [Google Scholar]
  62. Flynn N. E., Wu G. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol. 1996 Nov;271(5 Pt 2):R1149–R1155. doi: 10.1152/ajpregu.1996.271.5.R1149. [DOI] [PubMed] [Google Scholar]
  63. Flynn N. E., Wu G. Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol. 1997 Mar;272(3 Pt 1):G474–G480. doi: 10.1152/ajpgi.1997.272.3.G474. [DOI] [PubMed] [Google Scholar]
  64. Flynn N. E., Wu G. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs. J Nutr. 1997 May;127(5):732–737. doi: 10.1093/jn/127.5.732. [DOI] [PubMed] [Google Scholar]
  65. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  66. Galea E., Regunathan S., Eliopoulos V., Feinstein D. L., Reis D. J. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J. 1996 May 15;316(Pt 1):247–249. doi: 10.1042/bj3160247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gamble J. G., Lehninger A. L. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed] [Google Scholar]
  68. García-Cardeña G., Martasek P., Masters B. S., Skidd P. M., Couet J., Li S., Lisanti M. P., Sessa W. C. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997 Oct 10;272(41):25437–25440. doi: 10.1074/jbc.272.41.25437. [DOI] [PubMed] [Google Scholar]
  69. Gebhardt R., Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2(4):567–570. doi: 10.1002/j.1460-2075.1983.tb01464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gill D. J., Low B. C., Grigor M. R. Interleukin-1 beta and tumor necrosis factor-alpha stimulate the cat-2 gene of the L-arginine transporter in cultured vascular smooth muscle cells. J Biol Chem. 1996 May 10;271(19):11280–11283. doi: 10.1074/jbc.271.19.11280. [DOI] [PubMed] [Google Scholar]
  71. Gotoh T., Araki M., Mori M. Chromosomal localization of the human arginase II gene and tissue distribution of its mRNA. Biochem Biophys Res Commun. 1997 Apr 17;233(2):487–491. doi: 10.1006/bbrc.1997.6473. [DOI] [PubMed] [Google Scholar]
  72. Gotoh T., Sonoki T., Nagasaki A., Terada K., Takiguchi M., Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 1996 Oct 21;395(2-3):119–122. doi: 10.1016/0014-5793(96)01015-0. [DOI] [PubMed] [Google Scholar]
  73. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Green L. C., Ruiz de Luzuriaga K., Wagner D. A., Rand W., Istfan N., Young V. R., Tannenbaum S. R. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764–7768. doi: 10.1073/pnas.78.12.7764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Green L. C., Tannenbaum S. R., Goldman P. Nitrate synthesis in the germfree and conventional rat. Science. 1981 Apr 3;212(4490):56–58. doi: 10.1126/science.6451927. [DOI] [PubMed] [Google Scholar]
  76. Griffith O. W., Stuehr D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  77. Grody W. W., Argyle C., Kern R. M., Dizikes G. J., Spector E. B., Strickland A. D., Klein D., Cederbaum S. D. Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis. J Clin Invest. 1989 Feb;83(2):602–609. doi: 10.1172/JCI113923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Grody W. W., Dizikes G. J., Cederbaum S. D. Human arginase isozymes. Isozymes Curr Top Biol Med Res. 1987;13:181–214. [PubMed] [Google Scholar]
  79. Gu H., Marth J. D., Orban P. C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. doi: 10.1126/science.8016642. [DOI] [PubMed] [Google Scholar]
  80. Guthmiller P., Van Pilsum J. F., Boen J. R., McGuire D. M. Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J Biol Chem. 1994 Jul 1;269(26):17556–17560. [PubMed] [Google Scholar]
  81. HALL L. M., JOHNSON R. C., COHEN P. P. The presence of carbamyl phosphate synthetase in intestinal mucosa. Biochim Biophys Acta. 1960 Jan 1;37:144–145. doi: 10.1016/0006-3002(60)90089-5. [DOI] [PubMed] [Google Scholar]
  82. Ha Y. H., Milner J. A., Corbin J. E. Arginine requirements in immature dogs. J Nutr. 1978 Feb;108(2):203–210. doi: 10.1093/jn/108.2.203. [DOI] [PubMed] [Google Scholar]
  83. Harbrecht B. G., Wirant E. M., Kim Y. M., Billiar T. R. Glucagon inhibits hepatocyte nitric oxide synthesis. Arch Surg. 1996 Dec;131(12):1266–1272. doi: 10.1001/archsurg.1996.01430240020002. [DOI] [PubMed] [Google Scholar]
  84. Hartman W. J., Prior R. L. Dietary arginine deficiency alters flux of glutamine and urea cycle intermediates across the portal-drained viscera and liver of rats. J Nutr. 1992 Jul;122(7):1472–1482. doi: 10.1093/jn/122.7.1472. [DOI] [PubMed] [Google Scholar]
  85. Hattori Y., Campbell E. B., Gross S. S. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem. 1994 Apr 1;269(13):9405–9408. [PubMed] [Google Scholar]
  86. Hattori Y., Shimoda S., Gross S. S. Effect of lipopolysaccharide treatment in vivo on tissue expression of argininosuccinate synthetase and argininosuccinate lyase mRNAs: relationship to nitric oxide synthase. Biochem Biophys Res Commun. 1995 Oct 4;215(1):148–153. doi: 10.1006/bbrc.1995.2445. [DOI] [PubMed] [Google Scholar]
  87. Hecker M., Nematollahi H., Hey C., Busse R., Racké K. Inhibition of arginase by NG-hydroxy-L-arginine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett. 1995 Feb 13;359(2-3):251–254. doi: 10.1016/0014-5793(95)00039-c. [DOI] [PubMed] [Google Scholar]
  88. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Heird W. C., Nicholson J. F., Driscoll J. M., Jr, Schullinger J. N., Winters R. W. Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic l-amino acids: a preliminary report. J Pediatr. 1972 Jul;81(1):162–165. doi: 10.1016/s0022-3476(72)80396-2. [DOI] [PubMed] [Google Scholar]
  90. Henning S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol. 1981 Sep;241(3):G199–G214. doi: 10.1152/ajpgi.1981.241.3.G199. [DOI] [PubMed] [Google Scholar]
  91. Herzfeld A., Mezl V. A., Knox W. E. Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues. Biochem J. 1977 Jul 15;166(1):95–103. doi: 10.1042/bj1660095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Herzfeld A., Raper S. M. Effects of cortisol or starvation on the activities of four enzymes in small intestine and liver of the rat during development. J Dev Physiol. 1979 Aug;1(4):315–327. [PubMed] [Google Scholar]
  93. Herzfeld A., Raper S. M. Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta. 1976 May 28;428(3):600–610. doi: 10.1016/0304-4165(76)90188-4. [DOI] [PubMed] [Google Scholar]
  94. Hey C., Boucher J. L., Vadon-Le Goff S., Ketterer G., Wessler I., Racké K. Inhibition of arginase in rat and rabbit alveolar macrophages by N omega-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase. Br J Pharmacol. 1997 Jun;121(3):395–400. doi: 10.1038/sj.bjp.0701143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  96. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  97. Hirvonen A., Eloranta T., Hyvönen T., Alhonen L., Jänne J. Characterization of difluoromethylornithine-resistant mouse and human tumour cell lines. Biochem J. 1989 Mar 15;258(3):709–713. doi: 10.1042/bj2580709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Hoogenraad N., Totino N., Elmer H., Wraight C., Alewood P., Johns R. B. Inhibition of intestinal citrulline synthesis causes severe growth retardation in rats. Am J Physiol. 1985 Dec;249(6 Pt 1):G792–G799. doi: 10.1152/ajpgi.1985.249.6.G792. [DOI] [PubMed] [Google Scholar]
  99. Hosokawa H., Sawamura T., Kobayashi S., Ninomiya H., Miwa S., Masaki T. Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem. 1997 Mar 28;272(13):8717–8722. doi: 10.1074/jbc.272.13.8717. [DOI] [PubMed] [Google Scholar]
  100. Hrabák A., Bajor T., Temesi A. Comparison of substrate and inhibitor specificity of arginase and nitric oxide (NO) synthase for arginine analogues and related compounds in murine and rat macrophages. Biochem Biophys Res Commun. 1994 Jan 14;198(1):206–212. doi: 10.1006/bbrc.1994.1029. [DOI] [PubMed] [Google Scholar]
  101. Hrabák A., Temesi A., Csuka I., Antoni F. Inverse relation in the de novo arginase synthesis and nitric oxide production in murine and rat peritoneal macrophages in long-term cultures in vitro. Comp Biochem Physiol B. 1992 Dec;103(4):839–845. doi: 10.1016/0305-0491(92)90202-3. [DOI] [PubMed] [Google Scholar]
  102. Hurwitz R., Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol. 1986 Jul;251(1 Pt 1):G103–G110. doi: 10.1152/ajpgi.1986.251.1.G103. [DOI] [PubMed] [Google Scholar]
  103. Hölttä E., Pohjanpelto P. Polyamine dependence of Chinese hamster ovary cells in serum-free culture is due to deficient arginase activity. Biochim Biophys Acta. 1982 Dec 30;721(4):321–327. doi: 10.1016/0167-4889(82)90085-4. [DOI] [PubMed] [Google Scholar]
  104. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Imai T., Hirata Y., Kanno K., Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. doi: 10.1172/JCI117005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Indiveri C., Tonazzi A., Stipani I., Palmieri F. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochem J. 1997 Oct 15;327(Pt 2):349–355. doi: 10.1042/bj3270349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. JONES M. E., ANDERSON A. D., ANDERSON C., HODES S. Citrulline synthesis in rat tissues. Arch Biochem Biophys. 1961 Dec;95:499–507. doi: 10.1016/0003-9861(61)90182-5. [DOI] [PubMed] [Google Scholar]
  109. Jackson M. J., Beaudet A. L., O'Brien W. E. Mammalian urea cycle enzymes. Annu Rev Genet. 1986;20:431–464. doi: 10.1146/annurev.ge.20.120186.002243. [DOI] [PubMed] [Google Scholar]
  110. Jenkinson C. P., Grigor M. R. Rat mammary arginase: isolation and characterization. Biochem Med Metab Biol. 1994 Apr;51(2):156–165. doi: 10.1006/bmmb.1994.1020. [DOI] [PubMed] [Google Scholar]
  111. Jenkinson C. P., Grody W. W., Cederbaum S. D. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol. 1996 May;114(1):107–132. doi: 10.1016/0305-0491(95)02138-8. [DOI] [PubMed] [Google Scholar]
  112. Jones M. E. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J Nutr. 1985 Apr;115(4):509–515. doi: 10.1093/jn/115.4.509. [DOI] [PubMed] [Google Scholar]
  113. Kamoun P., Aral B., Saudubray J. M. Une nouvelle maladie héréditaire du métabolisme: le déficit en delta 1-pyrroline 5-carboxylate synthétase. Bull Acad Natl Med. 1998;182(1):131–139. [PubMed] [Google Scholar]
  114. Kerwin J. F., Jr, Lancaster J. R., Jr, Feldman P. L. Nitric oxide: a new paradigm for second messengers. J Med Chem. 1995 Oct 27;38(22):4343–4362. doi: 10.1021/jm00022a001. [DOI] [PubMed] [Google Scholar]
  115. Kilberg M. S., Stevens B. R., Novak D. A. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. doi: 10.1146/annurev.nu.13.070193.001033. [DOI] [PubMed] [Google Scholar]
  116. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Kuhn N. J., Ward S., Piponski M., Young T. W. Purification of human hepatic arginase and its manganese (II)-dependent and pH-dependent interconversion between active and inactive forms: a possible pH-sensing function of the enzyme on the ornithine cycle. Arch Biochem Biophys. 1995 Jun 20;320(1):24–34. doi: 10.1006/abbi.1995.1338. [DOI] [PubMed] [Google Scholar]
  118. Kung J. T., Brooks S. B., Jakway J. P., Leonard L. L., Talmage D. W. Suppression of in vitro cytotoxic response by macrophages due to induced arginase. J Exp Med. 1977 Sep 1;146(3):665–672. doi: 10.1084/jem.146.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kunz D., Mühl H., Walker G., Pfeilschifter J. Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5387–5391. doi: 10.1073/pnas.91.12.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Kuo F. C., Hwu W. L., Valle D., Darnell J. E., Jr Colocalization in pericentral hepatocytes in adult mice and similarity in developmental expression pattern of ornithine aminotransferase and glutamine synthetase mRNA. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9468–9472. doi: 10.1073/pnas.88.21.9468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Kurz S., Harrison D. G. Insulin and the arginine paradox. J Clin Invest. 1997 Feb 1;99(3):369–370. doi: 10.1172/JCI119166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Laidlaw S. A., Berg R. L., Kopple J. D., Naito H., Walker W. G., Walser M. Patterns of fasting plasma amino acid levels in chronic renal insufficiency: results from the feasibility phase of the Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1994 Apr;23(4):504–513. doi: 10.1016/s0272-6386(12)80371-4. [DOI] [PubMed] [Google Scholar]
  123. Levillain O., Hus-Citharel A., Morel F., Bankir L. Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am J Physiol. 1993 Jun;264(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1993.264.6.F1038. [DOI] [PubMed] [Google Scholar]
  124. Levillain O., Hus-Citharel A., Morel F., Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol. 1990 Dec;259(6 Pt 2):F916–F923. doi: 10.1152/ajprenal.1990.259.6.F916. [DOI] [PubMed] [Google Scholar]
  125. Levillain O., Parvy P., Hus-Citharel A. Arginine metabolism in cat kidney. J Physiol. 1996 Mar 1;491(Pt 2):471–477. doi: 10.1113/jphysiol.1996.sp021231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
  127. Li G., Regunathan S., Reis D. J. Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci. 1995 Jul 12;763:325–329. doi: 10.1111/j.1749-6632.1995.tb32418.x. [DOI] [PubMed] [Google Scholar]
  128. Linzell J. L., Mepham T. B., Annison E. F., West C. E. Mammary metabolism in lactating sows: arteriovenous differences of milk precursors and the mammary metabolism of [14C]glucose and [14C]acetate. Br J Nutr. 1969 Jun;23(2):319–332. doi: 10.1079/bjn19690039. [DOI] [PubMed] [Google Scholar]
  129. Long C. L., Jeevanandam M., Kinney J. M. Metabolism and recycling of urea in man. Am J Clin Nutr. 1978 Aug;31(8):1367–1382. doi: 10.1093/ajcn/31.8.1367. [DOI] [PubMed] [Google Scholar]
  130. Lortie M. J., Novotny W. F., Peterson O. W., Vallon V., Malvey K., Mendonca M., Satriano J., Insel P., Thomson S. C., Blantz R. C. Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest. 1996 Jan 15;97(2):413–420. doi: 10.1172/JCI118430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Louis C. A., Reichner J. S., Henry W. L., Jr, Mastrofrancesco B., Gotoh T., Mori M., Albina J. E. Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am J Physiol. 1998 Mar;274(3 Pt 2):R775–R782. doi: 10.1152/ajpregu.1998.274.3.R775. [DOI] [PubMed] [Google Scholar]
  132. MERTZ E. T., BEESON W. M., JACKSON H. D. Classification of essential amino acids for the weanling pig. Arch Biochem Biophys. 1952 Jul;38:121–128. doi: 10.1016/0003-9861(52)90015-5. [DOI] [PubMed] [Google Scholar]
  133. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  134. Malandro M. S., Kilberg M. S. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–336. doi: 10.1146/annurev.bi.65.070196.001513. [DOI] [PubMed] [Google Scholar]
  135. Manteuffel-Cymborowska M., Chmurzyńska W., Peska M., Grzelakowska-Sztabert B. Arginine and ornithine metabolizing enzymes in testosterone-induced hypertrophic mouse kidney. Int J Biochem Cell Biol. 1995 Mar;27(3):287–295. doi: 10.1016/1357-2725(94)00070-r. [DOI] [PubMed] [Google Scholar]
  136. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  137. Marzinzig M., Nussler A. K., Stadler J., Marzinzig E., Barthlen W., Nussler N. C., Beger H. G., Morris S. M., Jr, Brückner U. B. Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide. 1997 Apr;1(2):177–189. doi: 10.1006/niox.1997.0116. [DOI] [PubMed] [Google Scholar]
  138. Matsuzawa T., Kobayashi T., Tashiro K., Kasahara M. Changes in ornithine metabolic enzymes induced by dietary protein in small intestine and liver: intestine-liver relationship in ornithine supply to liver. J Biochem. 1994 Oct;116(4):721–727. doi: 10.1093/oxfordjournals.jbchem.a124587. [DOI] [PubMed] [Google Scholar]
  139. Matthews D. E., Marano M. A., Campbell R. G. Splanchnic bed utilization of glutamine and glutamic acid in humans. Am J Physiol. 1993 Jun;264(6 Pt 1):E848–E854. doi: 10.1152/ajpendo.1993.264.6.E848. [DOI] [PubMed] [Google Scholar]
  140. McDonald K. K., Zharikov S., Block E. R., Kilberg M. S. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". J Biol Chem. 1997 Dec 12;272(50):31213–31216. doi: 10.1074/jbc.272.50.31213. [DOI] [PubMed] [Google Scholar]
  141. McGivan J. D., Bradford N. M., Beavis A. D. Factors influencing the activity of ornithine aminotransferase in isolated rat liver mitochondria. Biochem J. 1977 Jan 15;162(1):147–156. doi: 10.1042/bj1620147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. McGuire D. M., Gross M. D., Elde R. P., van Pilsum J. F. Localization of L-arginine-glycine amidinotransferase protein in rat tissues by immunofluorescence microscopy. J Histochem Cytochem. 1986 Apr;34(4):429–435. doi: 10.1177/34.4.3512696. [DOI] [PubMed] [Google Scholar]
  143. Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
  144. Meininger C. J., Wu G. L-glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther. 1997 Apr;281(1):448–453. [PubMed] [Google Scholar]
  145. Mepham T. B., Linzell J. L. A quantitative assessment of the contribution of individual plasma amino acids to the synthesis of milk proteins by the goat mammary gland. Biochem J. 1966 Oct;101(1):76–83. doi: 10.1042/bj1010076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Meyer J., Richter N., Hecker M. High-performance liquid chromatographic determination of nitric oxide synthase-related arginine derivatives in vitro and in vivo. Anal Biochem. 1997 Apr 5;247(1):11–16. doi: 10.1006/abio.1997.2008. [DOI] [PubMed] [Google Scholar]
  147. Mezl V. A., Knox W. E. Metabolism of arginine in lactating rat mammary gland. Biochem J. 1977 Jul 15;166(1):105–113. doi: 10.1042/bj1660105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Michel T., Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997 Nov 1;100(9):2146–2152. doi: 10.1172/JCI119750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Mills C. D., Shearer J., Evans R., Caldwell M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992 Oct 15;149(8):2709–2714. [PubMed] [Google Scholar]
  150. Milner J. A., Visek W. J. Urinary metabolites characteristic of urea-cycle amino acid deficiency. Metabolism. 1975 May;24(5):643–651. doi: 10.1016/0026-0495(75)90144-4. [DOI] [PubMed] [Google Scholar]
  151. Modolell M., Eichmann K., Soler G. Oxidation of N(G)-hydroxyl-L-arginine to nitric oxide mediated by respiratory burst: an alternative pathway to NO synthesis. FEBS Lett. 1997 Jan 20;401(2-3):123–126. doi: 10.1016/s0014-5793(96)01451-2. [DOI] [PubMed] [Google Scholar]
  152. Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
  153. Moorman A. F., de Boer P. A., Geerts W. J., van den Zande L., Lamers W. H., Charles R. Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem. 1988 Jul;36(7):751–755. doi: 10.1177/36.7.2898495. [DOI] [PubMed] [Google Scholar]
  154. Morel F., Hus-Citharel A., Levillain O. Biochemical heterogeneity of arginine metabolism along kidney proximal tubules. Kidney Int. 1996 Jun;49(6):1608–1610. doi: 10.1038/ki.1996.233. [DOI] [PubMed] [Google Scholar]
  155. Morris J. G., Rogers Q. R. Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science. 1978 Jan 27;199(4327):431–432. doi: 10.1126/science.619464. [DOI] [PubMed] [Google Scholar]
  156. Morris J. G., Rogers Q. R. Arginine: an essential amino acid for the cat. J Nutr. 1978 Dec;108(12):1944–1953. doi: 10.1093/jn/108.12.1944. [DOI] [PubMed] [Google Scholar]
  157. Morris J. G., Rogers Q. R., Winterrowd D. L., Kamikawa E. M. The utilization of ornithine and citrulline by the growing kitten. J Nutr. 1979 Apr;109(4):724–729. doi: 10.1093/jn/109.4.724. [DOI] [PubMed] [Google Scholar]
  158. Morris S. M., Jr, Bhamidipati D., Kepka-Lenhart D. Human type II arginase: sequence analysis and tissue-specific expression. Gene. 1997 Jul 9;193(2):157–161. doi: 10.1016/s0378-1119(97)00099-1. [DOI] [PubMed] [Google Scholar]
  159. Morris S. M., Jr, Billiar T. R. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. doi: 10.1152/ajpendo.1994.266.6.E829. [DOI] [PubMed] [Google Scholar]
  160. Morris S. M., Jr, Kepka D. M., Sweeney W. E., Jr, Avner E. D. Abundance of mRNAs encoding urea cycle enzymes in fetal and neonatal mouse liver. Arch Biochem Biophys. 1989 Feb 15;269(1):175–180. doi: 10.1016/0003-9861(89)90097-0. [DOI] [PubMed] [Google Scholar]
  161. Morris S. M., Jr, Moncman C. L., Holub J. S., Hod Y. Nutritional and hormonal regulation of mRNA abundance for arginine biosynthetic enzymes in kidney. Arch Biochem Biophys. 1989 Aug 15;273(1):230–237. doi: 10.1016/0003-9861(89)90183-5. [DOI] [PubMed] [Google Scholar]
  162. Morris S. M., Jr Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr. 1992;12:81–101. doi: 10.1146/annurev.nu.12.070192.000501. [DOI] [PubMed] [Google Scholar]
  163. Morris S. M., Jr, Sweeney W. E., Jr, Kepka D. M., O'Brien W. E., Avner E. D. Localization of arginine biosynthetic enzymes in renal proximal tubules and abundance of mRNA during development. Pediatr Res. 1991 Feb;29(2):151–154. doi: 10.1203/00006450-199102000-00010. [DOI] [PubMed] [Google Scholar]
  164. Morrissey J. J., Klahr S. Agmatine activation of nitric oxide synthase in endothelial cells. Proc Assoc Am Physicians. 1997 Jan;109(1):51–57. [PubMed] [Google Scholar]
  165. Morrissey J., McCracken R., Ishidoya S., Klahr S. Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 1995 May;47(5):1458–1461. doi: 10.1038/ki.1995.204. [DOI] [PubMed] [Google Scholar]
  166. Murphy J. M., Murch S. J., Ball R. O. Proline is synthesized from glutamate during intragastric infusion but not during intravenous infusion in neonatal piglets. J Nutr. 1996 Apr;126(4):878–886. doi: 10.1093/jn/126.4.878. [DOI] [PubMed] [Google Scholar]
  167. Nagasaki A., Gotoh T., Takeya M., Yu Y., Takiguchi M., Matsuzaki H., Takatsuki K., Mori M. Coinduction of nitric oxide synthase, argininosuccinate synthetase, and argininosuccinate lyase in lipopolysaccharide-treated rats. RNA blot, immunoblot, and immunohistochemical analyses. J Biol Chem. 1996 Feb 2;271(5):2658–2662. doi: 10.1074/jbc.271.5.2658. [DOI] [PubMed] [Google Scholar]
  168. Nichols W. K., Prosser F. H. Induction of ornithine decarboxylase in macrophages by bacterial lipopolysaccharides (LPS) and mycobacterial cell wall material. Life Sci. 1980 Sep 15;27(11):913–920. doi: 10.1016/0024-3205(80)90100-9. [DOI] [PubMed] [Google Scholar]
  169. Norris K. A., Schrimpf J. E., Flynn J. L., Morris S. M., Jr Enhancement of macrophage microbicidal activity: supplemental arginine and citrulline augment nitric oxide production in murine peritoneal macrophages and promote intracellular killing of Trypanosoma cruzi. Infect Immun. 1995 Jul;63(7):2793–2796. doi: 10.1128/iai.63.7.2793-2796.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Nsi-Emvo E., Chaton B., Foltzer-Jourdainne C., Gosse F., Raul F. Premature expression of sucrase-isomaltase triggered by corticoid-dependent changes in polyamine metabolism. Am J Physiol. 1996 Jan;270(1 Pt 1):G54–G59. doi: 10.1152/ajpgi.1996.270.1.G54. [DOI] [PubMed] [Google Scholar]
  171. Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
  172. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  173. Nussler A. K., Liu Z. Z., Hatakeyama K., Geller D. A., Billiar T. R., Morris S. M., Jr A cohort of supporting metabolic enzymes is coinduced with nitric oxide synthase in human tumor cell lines. Cancer Lett. 1996 May 15;103(1):79–84. doi: 10.1016/0304-3835(96)04199-7. [DOI] [PubMed] [Google Scholar]
  174. O'sullivan D., Brosnan J. T., Brosnan M. E. Hepatic zonation of the catabolism of arginine and ornithine in the perfused rat liver. Biochem J. 1998 Mar 1;330(Pt 2):627–632. doi: 10.1042/bj3300627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  176. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  177. Passarella S., Atlante A., Quagliariello E. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Eur J Biochem. 1990 Oct 5;193(1):221–227. doi: 10.1111/j.1432-1033.1990.tb19326.x. [DOI] [PubMed] [Google Scholar]
  178. Pastor C. M., Morris S. M., Jr, Billiar T. R. Sources of arginine for induced nitric oxide synthesis in the isolated perfused liver. Am J Physiol. 1995 Dec;269(6 Pt 1):G861–G866. doi: 10.1152/ajpgi.1995.269.6.G861. [DOI] [PubMed] [Google Scholar]
  179. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Prior R. L., Gross K. L. Dietary arginine deficiency and gut ammonium infusion alter flux of urea cycle intermediates across the portal-drained viscera of pigs. J Nutr. 1995 Feb;125(2):251–263. doi: 10.1093/jn/125.2.251. [DOI] [PubMed] [Google Scholar]
  181. ROSE W. C., HAINES W. J., WARNER D. T. The amino acid requirements of man. V. The rôle of lysine, arginine, and tryptophan. J Biol Chem. 1954 Jan;206(1):421–430. [PubMed] [Google Scholar]
  182. Rabier D., Narcy C., Bardet J., Parvy P., Saudubray J. M., Kamoun P. Arginine remains an essential amino acid after liver transplantation in urea cycle enzyme deficiencies. J Inherit Metab Dis. 1991;14(3):277–280. doi: 10.1007/BF01811681. [DOI] [PubMed] [Google Scholar]
  183. Raijman L. Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine. Biochem J. 1974 Feb;138(2):225–232. doi: 10.1042/bj1380225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Reczkowski R. S., Ash D. E. Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors. Arch Biochem Biophys. 1994 Jul;312(1):31–37. doi: 10.1006/abbi.1994.1276. [DOI] [PubMed] [Google Scholar]
  185. Reeds P. J., Cadenhead A., Fuller M. F., Lobley G. E., McDonald J. D. Protein turnover in growing pigs. Effects of age and food intake. Br J Nutr. 1980 May;43(3):445–455. doi: 10.1079/bjn19800112. [DOI] [PubMed] [Google Scholar]
  186. Rehberg P. B. Studies on Kidney Function: The Rate of Filtration and Reabsorption in the Human Kidney. Biochem J. 1926;20(3):447–460. doi: 10.1042/bj0200447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Reuber B. E., Karl C., Reimann S. A., Mihalik S. J., Dodt G. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. J Biol Chem. 1997 Mar 7;272(10):6766–6776. doi: 10.1074/jbc.272.10.6766. [DOI] [PubMed] [Google Scholar]
  188. Reyes A. A., Karl I. E., Klahr S. Role of arginine in health and in renal disease. Am J Physiol. 1994 Sep;267(3 Pt 2):F331–F346. doi: 10.1152/ajprenal.1994.267.3.F331. [DOI] [PubMed] [Google Scholar]
  189. Robertson C. A., Green B. G., Niedzwiecki L., Harrison R. K., Grant S. K. Effect of nitric oxide synthase substrate analog inhibitors on rat liver arginase. Biochem Biophys Res Commun. 1993 Dec 15;197(2):523–528. doi: 10.1006/bbrc.1993.2510. [DOI] [PubMed] [Google Scholar]
  190. Rogers Q. R., Freedland R. A., Symmons R. A. In vivo synthesis and utilization of arginine in the rat. Am J Physiol. 1972 Jul;223(1):236–240. doi: 10.1152/ajplegacy.1972.223.1.236. [DOI] [PubMed] [Google Scholar]
  191. Rogers Q. R., Morris J. G., Freedland R. A. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme. 1977;22(5):348–356. doi: 10.1159/000458816. [DOI] [PubMed] [Google Scholar]
  192. Rogers Q. R., Phang J. M. Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr. 1985 Jan;115(1):146–150. doi: 10.1093/jn/115.1.146. [DOI] [PubMed] [Google Scholar]
  193. Ryall J. C., Quantz M. A., Shore G. C. Rat liver and intestinal mucosa differ in the developmental pattern and hormonal regulation of carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase gene expression. Eur J Biochem. 1986 May 2;156(3):453–458. doi: 10.1111/j.1432-1033.1986.tb09603.x. [DOI] [PubMed] [Google Scholar]
  194. Salleh M., Ardawi M., Majzoub M. F., Newsholme E. A. Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat. Clin Sci (Lond) 1988 Jul;75(1):93–100. doi: 10.1042/cs0750093. [DOI] [PubMed] [Google Scholar]
  195. Samuels S. E., Aarts H. L., Ball R. O. Effect of dietary proline on proline metabolism in the neonatal pig. J Nutr. 1989 Dec;119(12):1900–1906. doi: 10.1093/jn/119.12.1900. [DOI] [PubMed] [Google Scholar]
  196. Sastre M., Galea E., Feinstein D., Reis D. J., Regunathan S. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J. 1998 Mar 15;330(Pt 3):1405–1409. doi: 10.1042/bj3301405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Satriano J., Matsufuji S., Murakami Y., Lortie M. J., Schwartz D., Kelly C. J., Hayashi S., Blantz R. C. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem. 1998 Jun 19;273(25):15313–15316. doi: 10.1074/jbc.273.25.15313. [DOI] [PubMed] [Google Scholar]
  198. Schmidlin A., Wiesinger H. Stimulation of arginine transport and nitric oxide production by lipopolysaccharide is mediated by different signaling pathways in astrocytes. J Neurochem. 1995 Aug;65(2):590–594. doi: 10.1046/j.1471-4159.1995.65020590.x. [DOI] [PubMed] [Google Scholar]
  199. Schmidt K., Klatt P., Mayer B. Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase inhibitors. Mol Pharmacol. 1993 Sep;44(3):615–621. [PubMed] [Google Scholar]
  200. Schmidt K., Klatt P., Mayer B. Uptake of nitric oxide synthase inhibitors by macrophage RAW 264.7 cells. Biochem J. 1994 Jul 15;301(Pt 2):313–316. doi: 10.1042/bj3010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Schneemann M., Schoedon G., Hofer S., Blau N., Guerrero L., Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. doi: 10.1093/infdis/167.6.1358. [DOI] [PubMed] [Google Scholar]
  202. Schwartz D., Peterson O. W., Mendonca M., Satriano J., Lortie M., Blantz R. C. Agmatine affects glomerular filtration via a nitric oxide synthase-dependent mechanism. Am J Physiol. 1997 May;272(5 Pt 2):F597–F601. doi: 10.1152/ajprenal.1997.272.5.F597. [DOI] [PubMed] [Google Scholar]
  203. Seely J. E., Pegg A. E. Changes in mouse kidney ornithine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunoassay. J Biol Chem. 1983 Feb 25;258(4):2496–2500. [PubMed] [Google Scholar]
  204. Sessa W. C., Hecker M., Mitchell J. A., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8607–8611. doi: 10.1073/pnas.87.21.8607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Shearer J. D., Richards J. R., Mills C. D., Caldwell M. D. Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. Am J Physiol. 1997 Feb;272(2 Pt 1):E181–E190. doi: 10.1152/ajpendo.1997.272.2.E181. [DOI] [PubMed] [Google Scholar]
  206. Shurtleff S. A., McElwain C. M., Taffet S. M. Rapid expression of ornithine decarboxylase mRNA in a macrophage-like cell line: cAMP repression of the requirement for prior protein synthesis. J Cell Physiol. 1988 Mar;134(3):453–459. doi: 10.1002/jcp.1041340317. [DOI] [PubMed] [Google Scholar]
  207. Simmons W. W., Closs E. I., Cunningham J. M., Smith T. W., Kelly R. A. Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem. 1996 May 17;271(20):11694–11702. doi: 10.1074/jbc.271.20.11694. [DOI] [PubMed] [Google Scholar]
  208. Smith F. S., Ceppi E. D., Titheradge M. A. Inhibition of cytokine-induced inducible nitric oxide synthase expression by glucagon and cAMP in cultured hepatocytes. Biochem J. 1997 Aug 15;326(Pt 1):187–192. doi: 10.1042/bj3260187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Sorenson R. L., Stout L. E., Brelje T. C., Van Pilsum J. F., McGuire D. M. Evidence for the role of pancreatic acinar cells in the production of ornithine and guanidinoacetic acid by L-arginine:glycine amidinotransferase. Pancreas. 1995 May;10(4):389–394. doi: 10.1097/00006676-199505000-00011. [DOI] [PubMed] [Google Scholar]
  210. Spector E. B., Rice S. C., Cederbaum S. D. Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res. 1983 Dec;17(12):941–944. doi: 10.1203/00006450-198312000-00003. [DOI] [PubMed] [Google Scholar]
  211. Spincer J., Rook J. A., Towers K. G. The uptake of plasma constituents by the mammary gland of the sow. Biochem J. 1969 Mar;111(5):727–732. doi: 10.1042/bj1110727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Stadler J., Barton D., Beil-Moeller H., Diekmann S., Hierholzer C., Erhard W., Heidecke C. D. Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol. 1995 Jan;268(1 Pt 1):G183–G188. doi: 10.1152/ajpgi.1995.268.1.G183. [DOI] [PubMed] [Google Scholar]
  213. Stevens B. R., Kakuda D. K., Yu K., Waters M., Vo C. B., Raizada M. K. Induced nitric oxide synthesis is dependent on induced alternatively spliced CAT-2 encoding L-arginine transport in brain astrocytes. J Biol Chem. 1996 Sep 27;271(39):24017–24022. doi: 10.1074/jbc.271.39.24017. [DOI] [PubMed] [Google Scholar]
  214. Stoll B., Henry J., Reeds P. J., Yu H., Jahoor F., Burrin D. G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr. 1998 Mar;128(3):606–614. doi: 10.1093/jn/128.3.606. [DOI] [PubMed] [Google Scholar]
  215. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Stuehr D. J. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol. 1997;37:339–359. doi: 10.1146/annurev.pharmtox.37.1.339. [DOI] [PubMed] [Google Scholar]
  217. Stöckler S., Isbrandt D., Hanefeld F., Schmidt B., von Figura K. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet. 1996 May;58(5):914–922. [PMC free article] [PubMed] [Google Scholar]
  218. Su Y., Block E. R. Hypoxia inhibits L-arginine synthesis from L-citrulline in porcine pulmonary artery endothelial cells. Am J Physiol. 1995 Nov;269(5 Pt 1):L581–L587. doi: 10.1152/ajplung.1995.269.5.L581. [DOI] [PubMed] [Google Scholar]
  219. Swank R. T., Paigen K., Ganschow R. E. Genetic control of glucuronidase induction in mice. J Mol Biol. 1973 Dec 5;81(2):225–243. doi: 10.1016/0022-2836(73)90191-5. [DOI] [PubMed] [Google Scholar]
  220. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  221. Takiguchi M., Mori M. Transcriptional regulation of genes for ornithine cycle enzymes. Biochem J. 1995 Dec 15;312(Pt 3):649–659. doi: 10.1042/bj3120649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Tatoyan A., Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998 May 1;273(18):11044–11048. doi: 10.1074/jbc.273.18.11044. [DOI] [PubMed] [Google Scholar]
  223. Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Tizianello A., De Ferrari G., Garibotto G., Robaudo C. Amino acid metabolism and the liver in renal failure. Am J Clin Nutr. 1980 Jul;33(7):1354–1362. doi: 10.1093/ajcn/33.7.1354. [DOI] [PubMed] [Google Scholar]
  225. Trottier N. L., Shipley C. F., Easter R. A. Plasma amino acid uptake by the mammary gland of the lactating sow. J Anim Sci. 1997 May;75(5):1266–1278. doi: 10.2527/1997.7551266x. [DOI] [PubMed] [Google Scholar]
  226. Tsai F. J., Tsai C. H., Wu S. F., Liu Y. H., Yeh T. F. Catabolic effect in premature infants with early dexamethasone treatment. Acta Paediatr. 1996 Dec;85(12):1487–1490. doi: 10.1111/j.1651-2227.1996.tb13957.x. [DOI] [PubMed] [Google Scholar]
  227. Van Pilsum J. F., Stephens G. C., Taylor D. Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J. 1972 Jan;126(2):325–345. [PMC free article] [PubMed] [Google Scholar]
  228. Van Winkle L. J. Endogenous amino acid transport systems and expression of mammalian amino acid transport proteins in Xenopus oocytes. Biochim Biophys Acta. 1993 Oct 29;1154(2):157–172. doi: 10.1016/0304-4157(93)90009-d. [DOI] [PubMed] [Google Scholar]
  229. Visek W. J. Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986 Jan;116(1):36–46. doi: 10.1093/jn/116.1.36. [DOI] [PubMed] [Google Scholar]
  230. Vockley J. G., Jenkinson C. P., Shukla H., Kern R. M., Grody W. W., Cederbaum S. D. Cloning and characterization of the human type II arginase gene. Genomics. 1996 Dec 1;38(2):118–123. doi: 10.1006/geno.1996.0606. [DOI] [PubMed] [Google Scholar]
  231. Vodovotz Y., Kwon N. S., Pospischil M., Manning J., Paik J., Nathan C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J Immunol. 1994 Apr 15;152(8):4110–4118. [PubMed] [Google Scholar]
  232. Vodovotz Y., Russell D., Xie Q. W., Bogdan C., Nathan C. Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol. 1995 Mar 15;154(6):2914–2925. [PubMed] [Google Scholar]
  233. Wagner D. A., Young V. R., Tannenbaum S. R. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4518–4521. doi: 10.1073/pnas.80.14.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Wakabayashi Y., Henslee J. G., Jones M. E. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. Subcellular localization and temperature stability. J Biol Chem. 1983 Mar 25;258(6):3873–3882. [PubMed] [Google Scholar]
  235. Wakabayashi Y., Jones M. E. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. J Biol Chem. 1983 Mar 25;258(6):3865–3872. [PubMed] [Google Scholar]
  236. Wakabayashi Y., Yamada E., Yoshida T., Takahashi H. Arginine becomes an essential amino acid after massive resection of rat small intestine. J Biol Chem. 1994 Dec 23;269(51):32667–32671. [PubMed] [Google Scholar]
  237. Wakabayashi Y., Yamada E., Yoshida T., Takahashi N. Effect of intestinal resection and arginine-free diet on rat physiology. Am J Physiol. 1995 Aug;269(2 Pt 1):G313–G318. doi: 10.1152/ajpgi.1995.269.2.G313. [DOI] [PubMed] [Google Scholar]
  238. Wakui H., Komatsuda A., Itoh H., Kobayashi R., Nakamoto Y., Miura A. B. Renal argininosuccinate synthetase: purification, immunohistochemical localization, and elastin-binding property. Ren Physiol Biochem. 1992 Jan-Feb;15(1):1–9. doi: 10.1159/000173435. [DOI] [PubMed] [Google Scholar]
  239. Walker J. B. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242. doi: 10.1002/9780470122952.ch4. [DOI] [PubMed] [Google Scholar]
  240. Wang T., Lawler A. M., Steel G., Sipila I., Milam A. H., Valle D. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet. 1995 Oct;11(2):185–190. doi: 10.1038/ng1095-185. [DOI] [PubMed] [Google Scholar]
  241. Wang W. W., Jenkinson C. P., Griscavage J. M., Kern R. M., Arabolos N. S., Byrns R. E., Cederbaum S. D., Ignarro L. J. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun. 1995 May 25;210(3):1009–1016. doi: 10.1006/bbrc.1995.1757. [DOI] [PubMed] [Google Scholar]
  242. Watford M. The urea cycle: a two-compartment system. Essays Biochem. 1991;26:49–58. [PubMed] [Google Scholar]
  243. Weber F. L., Maddrey W. C., Walser M. Amino acid metabolism of dog jejunum before and during absorption of keto analogues. Am J Physiol. 1977 Mar;232(3):E263–E269. doi: 10.1152/ajpendo.1977.232.3.E263. [DOI] [PubMed] [Google Scholar]
  244. Wettstein M., Gerok W., Häussinger D. Endotoxin-induced nitric oxide synthesis in the perfused rat liver: effects of L-arginine and ammonium chloride. Hepatology. 1994 Mar;19(3):641–647. doi: 10.1002/hep.1840190315. [DOI] [PubMed] [Google Scholar]
  245. Williams K. Interactions of polyamines with ion channels. Biochem J. 1997 Jul 15;325(Pt 2):289–297. doi: 10.1042/bj3250289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Windmueller H. G., Spaeth A. E. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys. 1975 Dec;171(2):662–672. doi: 10.1016/0003-9861(75)90078-8. [DOI] [PubMed] [Google Scholar]
  247. Windmueller H. G., Spaeth A. E. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys. 1976 Aug;175(2):670–676. doi: 10.1016/0003-9861(76)90558-0. [DOI] [PubMed] [Google Scholar]
  248. Windmueller H. G., Spaeth A. E. Source and fate of circulating citrulline. Am J Physiol. 1981 Dec;241(6):E473–E480. doi: 10.1152/ajpendo.1981.241.6.E473. [DOI] [PubMed] [Google Scholar]
  249. Windmueller H. G., Spaeth A. E. Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem. 1974 Aug 25;249(16):5070–5079. [PubMed] [Google Scholar]
  250. Wraight C., Hoogenraad N. Dietary regulation of ornithine transcarbamylase mRNA in liver and small intestine. Aust J Biol Sci. 1988;41(4):435–440. doi: 10.1071/bi9880435. [DOI] [PubMed] [Google Scholar]
  251. Wraight C., Lingelbach K., Hoogenraad N. Comparison of ornithine transcarbamylase from rat liver and intestine. Evidence for differential regulation of enzyme levels. Eur J Biochem. 1985 Dec 2;153(2):239–242. doi: 10.1111/j.1432-1033.1985.tb09292.x. [DOI] [PubMed] [Google Scholar]
  252. Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Wu G., Borbolla A. G., Knabe D. A. The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr. 1994 Dec;124(12):2437–2444. doi: 10.1093/jn/124.12.437. [DOI] [PubMed] [Google Scholar]
  254. Wu G., Davis P. K., Flynn N. E., Knabe D. A., Davidson J. T. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr. 1997 Dec;127(12):2342–2349. doi: 10.1093/jn/127.12.2342. [DOI] [PubMed] [Google Scholar]
  255. Wu G. Intestinal mucosal amino acid catabolism. J Nutr. 1998 Aug;128(8):1249–1252. doi: 10.1093/jn/128.8.1249. [DOI] [PubMed] [Google Scholar]
  256. Wu G., Knabe D. A. Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol. 1995 Sep;269(3 Pt 2):R621–R629. doi: 10.1152/ajpregu.1995.269.3.R621. [DOI] [PubMed] [Google Scholar]
  257. Wu G., Knabe D. A., Flynn N. E. Synthesis of citrulline from glutamine in pig enterocytes. Biochem J. 1994 Apr 1;299(Pt 1):115–121. doi: 10.1042/bj2990115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Wu G., Knabe D. A., Flynn N. E., Yan W., Flynn S. P. Arginine degradation in developing porcine enterocytes. Am J Physiol. 1996 Nov;271(5 Pt 1):G913–G919. doi: 10.1152/ajpgi.1996.271.5.G913. [DOI] [PubMed] [Google Scholar]
  259. Wu G., Knabe D. A. Free and protein-bound amino acids in sow's colostrum and milk. J Nutr. 1994 Mar;124(3):415–424. doi: 10.1093/jn/124.3.415. [DOI] [PubMed] [Google Scholar]
  260. Wu G., Knabe D. A., Yan W., Flynn N. E. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol. 1995 Feb;268(2 Pt 2):R334–R342. doi: 10.1152/ajpregu.1995.268.2.R334. [DOI] [PubMed] [Google Scholar]
  261. Wu G., Meininger C. J. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol. 1995 Oct;269(4 Pt 2):H1312–H1318. doi: 10.1152/ajpheart.1995.269.4.H1312. [DOI] [PubMed] [Google Scholar]
  262. Wu G., Meininger C. J. Regulation of L-arginine synthesis from L-citrulline by L-glutamine in endothelial cells. Am J Physiol. 1993 Dec;265(6 Pt 2):H1965–H1971. doi: 10.1152/ajpheart.1993.265.6.H1965. [DOI] [PubMed] [Google Scholar]
  263. Wu G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol. 1997 Jun;272(6 Pt 1):G1382–G1390. doi: 10.1152/ajpgi.1997.272.6.G1382. [DOI] [PubMed] [Google Scholar]
  264. Wu G. Urea synthesis in enterocytes of developing pigs. Biochem J. 1995 Dec 15;312(Pt 3):717–723. doi: 10.1042/bj3120717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Xia H., Bredt D. S. Cloned and expressed nitric oxide synthase proteins. Methods Enzymol. 1996;268:427–436. doi: 10.1016/s0076-6879(96)68045-8. [DOI] [PubMed] [Google Scholar]
  266. Xie L., Gross S. S. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J Biol Chem. 1997 Jun 27;272(26):16624–16630. doi: 10.1074/jbc.272.26.16624. [DOI] [PubMed] [Google Scholar]
  267. Yip M. C., Knox W. E. Function of arginase in lactating mammary gland. Biochem J. 1972 May;127(5):893–899. doi: 10.1042/bj1270893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Yu Y. M., Burke J. F., Tompkins R. G., Martin R., Young V. R. Quantitative aspects of interorgan relationships among arginine and citrulline metabolism. Am J Physiol. 1996 Dec;271(6 Pt 1):E1098–E1109. doi: 10.1152/ajpendo.1996.271.6.E1098. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES