Abstract
Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms.
Full Text
The Full Text of this article is available as a PDF (448.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Peak M. Binding and translocation of glucokinase in hepatocytes. Biochem Soc Trans. 1997 Feb;25(1):145–150. doi: 10.1042/bst0250145. [DOI] [PubMed] [Google Scholar]
- Agius L., Peak M., Newgard C. B., Gomez-Foix A. M., Guinovart J. J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 1996 Nov 29;271(48):30479–30486. doi: 10.1074/jbc.271.48.30479. [DOI] [PubMed] [Google Scholar]
- Agius L., Peak M., Van Schaftingen E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem J. 1995 Aug 1;309(Pt 3):711–713. doi: 10.1042/bj3090711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alessi D. R., Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998 Feb;8(1):55–62. doi: 10.1016/s0959-437x(98)80062-2. [DOI] [PubMed] [Google Scholar]
- Alonso M. D., Lomako J., Lomako W. M., Whelan W. J. A new look at the biogenesis of glycogen. FASEB J. 1995 Sep;9(12):1126–1137. doi: 10.1096/fasebj.9.12.7672505. [DOI] [PubMed] [Google Scholar]
- Altin J. G., Bygrave F. L. Non-parenchymal cells as mediators of physiological responses in liver. Mol Cell Biochem. 1988 Sep;83(1):3–14. doi: 10.1007/BF00223193. [DOI] [PubMed] [Google Scholar]
- Altin J. G., Bygrave F. L. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. Biochem J. 1986 Sep 15;238(3):653–661. doi: 10.1042/bj2380653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. G., Browne G. J., Cohen P., Cohen P. T. PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. FEBS Lett. 1997 Nov 24;418(1-2):210–214. doi: 10.1016/s0014-5793(97)01385-9. [DOI] [PubMed] [Google Scholar]
- Baek K. J., Das T., Gray C., Antar S., Murugesan G., Im M. J. Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. J Biol Chem. 1993 Dec 25;268(36):27390–27397. [PubMed] [Google Scholar]
- Bai G., Zhang Z. J., Werner R., Nuttall F. Q., Tan A. W., Lee E. Y. The primary structure of rat liver glycogen synthase deduced by cDNA cloning. Absence of phosphorylation sites 1a and 1b. J Biol Chem. 1990 May 15;265(14):7843–7848. [PubMed] [Google Scholar]
- Bao Y., Kishnani P., Wu J. Y., Chen Y. T. Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest. 1996 Feb 15;97(4):941–948. doi: 10.1172/JCI118517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bao Y., Yang B. Z., Dawson T. L., Jr, Chen Y. T. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: identification of multiple tissue-specific isoforms. Gene. 1997 Sep 15;197(1-2):389–398. doi: 10.1016/s0378-1119(97)00291-6. [DOI] [PubMed] [Google Scholar]
- Baqué S., Guinovart J. J., Ferrer J. C. Glycogenin, the primer of glycogen synthesis, binds to actin. FEBS Lett. 1997 Nov 17;417(3):355–359. doi: 10.1016/s0014-5793(97)01299-4. [DOI] [PubMed] [Google Scholar]
- Board M., Hadwen M., Johnson L. N. Effects of novel analogues of D-glucose on glycogen phosphorylase activities in crude extracts of liver and skeletal muscle. Eur J Biochem. 1995 Mar 15;228(3):753–761. doi: 10.1111/j.1432-1033.1995.0753m.x. [DOI] [PubMed] [Google Scholar]
- Bode A. M., Foster J. D., Nordlie R. C. Glyconeogenesis from L-proline involves metabolite inhibition of the glucose-6-phosphatase system. J Biol Chem. 1992 Feb 15;267(5):2860–2863. [PubMed] [Google Scholar]
- Bollen M., Stalmans W. The effect of the thyroid status on the activation of glycogen synthase in liver cells. Endocrinology. 1988 Jun;122(6):2915–2919. doi: 10.1210/endo-122-6-2915. [DOI] [PubMed] [Google Scholar]
- Bollen M., Stalmans W. The modulator protein dissociates the catalytic subunit of hepatic protein phosphatase G from glycogen. Biochem J. 1988 Mar 15;250(3):659–663. doi: 10.1042/bj2500659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
- Bollen M., Vandenheede J. R., Goris J., Stalmans W. Characterization of glycogen-synthase phosphatase and phosphorylase phosphatase in subcellular liver fractions. Biochim Biophys Acta. 1988 Apr 2;969(1):66–77. doi: 10.1016/0167-4889(88)90089-4. [DOI] [PubMed] [Google Scholar]
- Borgs M., Bollen M., Keppens S., Yap S. H., Stalmans W., Vanstapel F. Modulation of basal hepatic glycogenolysis by nitric oxide. Hepatology. 1996 Jun;23(6):1564–1571. doi: 10.1002/hep.510230637. [DOI] [PubMed] [Google Scholar]
- Brady M. J., Printen J. A., Mastick C. C., Saltiel A. R. Role of protein targeting to glycogen (PTG) in the regulation of protein phosphatase-1 activity. J Biol Chem. 1997 Aug 8;272(32):20198–20204. doi: 10.1074/jbc.272.32.20198. [DOI] [PubMed] [Google Scholar]
- Brechler V., Pavoine C., Hanf R., Garbarz E., Fischmeister R., Pecker F. Inhibition by glucagon of the cGMP-inhibited low-Km cAMP phosphodiesterase in heart is mediated by a pertussis toxin-sensitive G-protein. J Biol Chem. 1992 Aug 5;267(22):15496–15501. [PubMed] [Google Scholar]
- Brown K. S., Kalinowski S. S., Megill J. R., Durham S. K., Mookhtiar K. A. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes. 1997 Feb;46(2):179–186. doi: 10.2337/diab.46.2.179. [DOI] [PubMed] [Google Scholar]
- Browner M. F., Fletterick R. J. Phosphorylase: a biological transducer. Trends Biochem Sci. 1992 Feb;17(2):66–71. doi: 10.1016/0968-0004(92)90504-3. [DOI] [PubMed] [Google Scholar]
- Burchell A. A re-evaluation of GLUT 7. Biochem J. 1998 May 1;331(Pt 3):973–973. doi: 10.1042/bj3310973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
- Burnstock G. Purines and cotransmitters in adrenergic and cholinergic neurones. Prog Brain Res. 1986;68:193–203. doi: 10.1016/s0079-6123(08)60239-3. [DOI] [PubMed] [Google Scholar]
- Cadefau J., Bollen M., Stalmans W. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase. Biochem J. 1997 Mar 15;322(Pt 3):745–750. doi: 10.1042/bj3220745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calder P. C., Geddes R. The structure of the rat liver glycogen backbone protein. Biochem Int. 1988 Oct;17(4):711–717. [PubMed] [Google Scholar]
- Carabaza A., Ciudad C. J., Baqué S., Guinovart J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 1992 Jan 20;296(2):211–214. doi: 10.1016/0014-5793(92)80381-p. [DOI] [PubMed] [Google Scholar]
- Carlsen J., Christiansen K., Vinten J. Insulin stimulated glycogen synthesis in isolated rat hepatocytes: effect of protein kinase inhibitors. Cell Signal. 1997 Sep;9(6):447–450. doi: 10.1016/s0898-6568(97)00035-1. [DOI] [PubMed] [Google Scholar]
- Carlson K. I., Marker J. C., Arnall D. A., Terry M. L., Yang H. T., Lindsay L. G., Bracken M. E., Winder W. W. Epinephrine is unessential for stimulation of liver glycogenolysis during exercise. J Appl Physiol (1985) 1985 Feb;58(2):544–548. doi: 10.1152/jappl.1985.58.2.544. [DOI] [PubMed] [Google Scholar]
- Cherrington A. D., Williams P. E., Shulman G. I., Lacy W. W. Differential time course of glucagon's effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes. 1981 Mar;30(3):180–187. doi: 10.2337/diab.30.3.180. [DOI] [PubMed] [Google Scholar]
- Chrisman T. D., Jordan J. E., Exton J. H. Purification of rat liver phosphorylase kinase. J Biol Chem. 1982 Sep 25;257(18):10798–10804. [PubMed] [Google Scholar]
- Chrisman T. D., Sobo G. E., Exton J. H. The Mg2+ requirements of nonactivated and activated rat liver phosphorylase kinase. Inhibition of the activated form by free Mg2+. FEBS Lett. 1984 Feb 27;167(2):295–300. doi: 10.1016/0014-5793(84)80146-5. [DOI] [PubMed] [Google Scholar]
- Christ B., Jungermann K. Sub-compartmentation of the 'cytosolic' glucose 6-phosphate pool in cultured rat hepatocytes. FEBS Lett. 1987 Sep 14;221(2):375–380. doi: 10.1016/0014-5793(87)80959-6. [DOI] [PubMed] [Google Scholar]
- Ciudad C. J., Carabaza A., Guinovart J. J. Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1195–1200. doi: 10.1016/s0006-291x(86)80171-1. [DOI] [PubMed] [Google Scholar]
- Ciudad C. J., Carabaza A., Guinovart J. J. Glycogen synthesis from glucose and fructose in hepatocytes from diabetic rats. Arch Biochem Biophys. 1988 Dec;267(2):437–447. doi: 10.1016/0003-9861(88)90049-5. [DOI] [PubMed] [Google Scholar]
- Clark D., Haynes D. The glycogen storage disease (gsd/gsd) rat. Curr Top Cell Regul. 1988;29:217–263. doi: 10.1016/b978-0-12-152829-4.50007-0. [DOI] [PubMed] [Google Scholar]
- Cohen P., Alessi D. R., Cross D. A. PDK1, one of the missing links in insulin signal transduction? FEBS Lett. 1997 Jun 23;410(1):3–10. doi: 10.1016/s0014-5793(97)00490-0. [DOI] [PubMed] [Google Scholar]
- Consoli A., Kennedy F., Miles J., Gerich J. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J Clin Invest. 1987 Nov;80(5):1303–1310. doi: 10.1172/JCI113206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel S., Zhang S., DePaoli-Roach A. A., Kim K. H. Dephosphorylation of Sp1 by protein phosphatase 1 is involved in the glucose-mediated activation of the acetyl-CoA carboxylase gene. J Biol Chem. 1996 Jun 21;271(25):14692–14697. doi: 10.1074/jbc.271.25.14692. [DOI] [PubMed] [Google Scholar]
- Dasgupta M., Blumenthal D. K. Characterization of the regulatory domain of the gamma-subunit of phosphorylase kinase. The two noncontiguous calmodulin-binding subdomains are also autoinhibitory. J Biol Chem. 1995 Sep 22;270(38):22283–22289. doi: 10.1074/jbc.270.38.22283. [DOI] [PubMed] [Google Scholar]
- Daza F. J., Parrilla R., Martín-Requero A. Influence of thyroid status on hepatic alpha 1-adrenoreceptor responsiveness. Am J Physiol. 1997 Dec;273(6 Pt 1):E1065–E1072. doi: 10.1152/ajpendo.1997.273.6.E1065. [DOI] [PubMed] [Google Scholar]
- Devos P., Hers H. G. A molecular order in the synthesis and degradation of glycogen in the liver. Eur J Biochem. 1979 Aug 15;99(1):161–167. doi: 10.1111/j.1432-1033.1979.tb13242.x. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Cadefau J., Stalmans W., Bollen M., Cohen P. T. Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats. Biochem J. 1998 Jul 15;333(Pt 2):253–257. doi: 10.1042/bj3330253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doherty M. J., Moorhead G., Morrice N., Cohen P., Cohen P. T. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett. 1995 Nov 20;375(3):294–298. doi: 10.1016/0014-5793(95)01184-g. [DOI] [PubMed] [Google Scholar]
- Doherty M. J., Young P. R., Cohen P. T. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996 Dec 16;399(3):339–343. doi: 10.1016/s0014-5793(96)01357-9. [DOI] [PubMed] [Google Scholar]
- Doiron B., Cuif M. H., Chen R., Kahn A. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. J Biol Chem. 1996 Mar 8;271(10):5321–5324. doi: 10.1074/jbc.271.10.5321. [DOI] [PubMed] [Google Scholar]
- Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
- Ercan N., Gannon M. C., Nuttall F. Q. Incorporation of glycogenin into a hepatic proteoglycogen after oral glucose administration. J Biol Chem. 1994 Sep 2;269(35):22328–22333. [PubMed] [Google Scholar]
- Exton J. H. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev. 1987 Jan;3(1):163–183. doi: 10.1002/dmr.5610030108. [DOI] [PubMed] [Google Scholar]
- Exton J. H. New developments in phospholipase D. J Biol Chem. 1997 Jun 20;272(25):15579–15582. doi: 10.1074/jbc.272.25.15579. [DOI] [PubMed] [Google Scholar]
- Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
- Fernando K. C., Barritt G. J. Evidence from studies with hepatocyte suspensions that store-operated Ca2+ inflow requires a pertussis toxin-sensitive trimeric G-protein. Biochem J. 1994 Oct 15;303(Pt 2):351–356. doi: 10.1042/bj3030351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Ariño J., Vilaró S., Bellido D., Guinovart J. J. Role of glucose 6-phosphate in the translocation of glycogen synthase in rat hepatocytes. Biochem J. 1992 Dec 1;288(Pt 2):497–501. doi: 10.1042/bj2880497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Bellido D., Vilaró S., Guinovart J. J. Glucose induces the translocation of glycogen synthase to the cell cortex in rat hepatocytes. Biochem J. 1997 Jan 1;321(Pt 1):227–231. doi: 10.1042/bj3210227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferre T., Riu E., Bosch F., Valera A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 1996 Aug;10(10):1213–1218. doi: 10.1096/fasebj.10.10.8751724. [DOI] [PubMed] [Google Scholar]
- Flückiger-Isler R. E., Walter P. Stimulation of rat liver glycogen synthesis by the adenosine kinase inhibitor 5-iodotubercidin. Biochem J. 1993 May 15;292(Pt 1):85–91. doi: 10.1042/bj2920085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaussin V., Baquet A., Hue L. Cell shrinkage follows, rather than mediates, the short-term effects of glucagon on carbohydrate metabolism. Biochem J. 1992 Oct 1;287(Pt 1):17–20. doi: 10.1042/bj2870017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaussin V., Gailly P., Gillis J. M., Hue L. Fructose-induced increase in intracellular free Mg2+ ion concentration in rat hepatocytes: relation with the enzymes of glycogen metabolism. Biochem J. 1997 Sep 15;326(Pt 3):823–827. doi: 10.1042/bj3260823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerin I., Veiga-da-Cunha M., Achouri Y., Collet J. F., Van Schaftingen E. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett. 1997 Dec 15;419(2-3):235–238. doi: 10.1016/s0014-5793(97)01463-4. [DOI] [PubMed] [Google Scholar]
- Gitzelmann R., Spycher M. A., Feil G., Müller J., Seilnacht B., Stahl M., Bosshard N. U. Liver glycogen synthase deficiency: a rarely diagnosed entity. Eur J Pediatr. 1996 Jul;155(7):561–567. doi: 10.1007/BF01957905. [DOI] [PubMed] [Google Scholar]
- Graf J., Häussinger D. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J Hepatol. 1996;24 (Suppl 1):53–77. [PubMed] [Google Scholar]
- Guinovart J. J., Gómez-Foix A. M., Seoane J., Fernández-Novell J. M., Bellido D., Vilaró S. Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver. Biochem Soc Trans. 1997 Feb;25(1):157–160. doi: 10.1042/bst0250157. [DOI] [PubMed] [Google Scholar]
- Harmann B., Zander N. F., Kilimann M. W. Isoform diversity of phosphorylase kinase alpha and beta subunits generated by alternative RNA splicing. J Biol Chem. 1991 Aug 25;266(24):15631–15637. [PubMed] [Google Scholar]
- Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
- Hespeling U., Jungermann K., Püschel G. P. Feedback-inhibition of glucagon-stimulated glycogenolysis in hepatocyte/Kupffer cell cocultures by glucagon-elicited prostaglandin production in Kupffer cells. Hepatology. 1995 Nov;22(5):1577–1583. [PubMed] [Google Scholar]
- Hirai K., Ishiko O., Tisdale M. Mechanism of depletion of liver glycogen in cancer cachexia. Biochem Biophys Res Commun. 1997 Dec 8;241(1):49–52. doi: 10.1006/bbrc.1997.7732. [DOI] [PubMed] [Google Scholar]
- Hirono H., Hayasaka K., Sato W., Takahashi T., Takada G. Isolation of cDNA encoding the human liver phosphorylase kinase alpha subunit (PHKA2) and identification of a missense mutation of the PHKA2 gene in a family with liver phosphorylase kinase deficiency. Biochem Mol Biol Int. 1995 Jul;36(3):505–511. [PubMed] [Google Scholar]
- Hubbard M. J., Cohen P. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. Eur J Biochem. 1989 Dec 22;186(3):711–716. doi: 10.1111/j.1432-1033.1989.tb15264.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Busshardt E., Stehle T., Stoll B., Wettstein M., Gerok W. Stimulation of thromboxane release by extracellular UTP and ATP from perfused rat liver. Role of icosanoids in mediating the nucleotide responses. Eur J Biochem. 1988 Dec 1;178(1):249–256. doi: 10.1111/j.1432-1033.1988.tb14450.x. [DOI] [PubMed] [Google Scholar]
- Iwai M., Jungermann K. Possible involvement of eicosanoids in the actions of sympathetic hepatic nerves on carbohydrate metabolism and hemodynamics in perfused rat liver. FEBS Lett. 1987 Aug 31;221(1):155–160. doi: 10.1016/0014-5793(87)80371-x. [DOI] [PubMed] [Google Scholar]
- Jungermann K., Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203. doi: 10.1146/annurev.nu.16.070196.001143. [DOI] [PubMed] [Google Scholar]
- Kahn A. Transcriptional regulation by glucose in the liver. Biochimie. 1997 Feb-Mar;79(2-3):113–118. doi: 10.1016/s0300-9084(97)81501-5. [DOI] [PubMed] [Google Scholar]
- Kalant N., Parniak M., Lemieux M. Compartmentation of glucose 6-phosphate in hepatocytes. Biochem J. 1987 Dec 15;248(3):927–931. doi: 10.1042/bj2480927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass G. E., Gahm A., Llopis J. Cyclic AMP stimulates Ca2+ entry in rat hepatocytes by interacting with the plasma membrane carriers involved in receptor-mediated Ca2+ influx. Cell Signal. 1994 Jul;6(5):493–501. doi: 10.1016/0898-6568(94)90003-5. [DOI] [PubMed] [Google Scholar]
- Keppens S. The complex interaction of ATP and UTP with isolated hepatocytes. How many receptors? Gen Pharmacol. 1993 Mar;24(2):283–289. doi: 10.1016/0306-3623(93)90304-g. [DOI] [PubMed] [Google Scholar]
- Krause U., Rider M. H., Hue L. Protein kinase signaling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepatocytes. J Biol Chem. 1996 Jul 12;271(28):16668–16673. doi: 10.1074/jbc.271.28.16668. [DOI] [PubMed] [Google Scholar]
- Laloux M., Stalmans W., Hers H. G. On the mechanism by which glucocorticoids cause the activation of glycogen synthase in mouse and rat livers. Eur J Biochem. 1983 Oct 17;136(1):175–181. doi: 10.1111/j.1432-1033.1983.tb07723.x. [DOI] [PubMed] [Google Scholar]
- Lanciotti R. A., Bender P. K. The gamma subunit of phosphorylase kinase contains a pseudosubstrate sequence. Eur J Biochem. 1995 May 15;230(1):139–145. doi: 10.1111/j.1432-1033.1995.0139i.x. [DOI] [PubMed] [Google Scholar]
- Lange J., Schlieps K., Lange K., Knoll-Köhler E. Activation of calcium signaling in isolated rat hepatocytes is accompanied by shape changes of microvilli. Exp Cell Res. 1997 Aug 1;234(2):486–497. doi: 10.1006/excr.1997.3652. [DOI] [PubMed] [Google Scholar]
- Lecavalier L., Bolli G., Cryer P., Gerich J. Contributions of gluconeogenesis and glycogenolysis during glucose counterregulation in normal humans. Am J Physiol. 1989 Jun;256(6 Pt 1):E844–E851. doi: 10.1152/ajpendo.1989.256.6.E844. [DOI] [PubMed] [Google Scholar]
- Liu L., Rannels S. R., Falconieri M., Phillips K. S., Wolpert E. B., Weaver T. E. The testis isoform of the phosphorylase kinase catalytic subunit (PhK-gammaT) plays a critical role in regulation of glycogen mobilization in developing lung. J Biol Chem. 1996 May 17;271(20):11761–11766. doi: 10.1074/jbc.271.20.11761. [DOI] [PubMed] [Google Scholar]
- Liu W., Madsen N. B., Braun C., Withers S. G. Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry. 1991 Feb 5;30(5):1419–1424. doi: 10.1021/bi00219a036. [DOI] [PubMed] [Google Scholar]
- Magnusson I., Rothman D. L., Gerard D. P., Katz L. D., Shulman G. I. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes. 1995 Feb;44(2):185–189. doi: 10.2337/diab.44.2.185. [DOI] [PubMed] [Google Scholar]
- Maichele A. J., Burwinkel B., Maire I., Søvik O., Kilimann M. W. Mutations in the testis/liver isoform of the phosphorylase kinase gamma subunit (PHKG2) cause autosomal liver glycogenosis in the gsd rat and in humans. Nat Genet. 1996 Nov;14(3):337–340. doi: 10.1038/ng1196-337. [DOI] [PubMed] [Google Scholar]
- Massillon D., Bollen M., De Wulf H., Overloop K., Vanstapel F., Van Hecke P., Stalmans W. Demonstration of a glycogen/glucose 1-phosphate cycle in hepatocytes from fasted rats. Selective inactivation of phosphorylase by 2-deoxy-2-fluoro-alpha-D-glucopyranosyl fluoride. J Biol Chem. 1995 Aug 18;270(33):19351–19356. doi: 10.1074/jbc.270.33.19351. [DOI] [PubMed] [Google Scholar]
- Massillon D., Chen W., Barzilai N., Prus-Wertheimer D., Hawkins M., Liu R., Taub R., Rossetti L. Carbon flux via the pentose phosphate pathway regulates the hepatic expression of the glucose-6-phosphatase and phosphoenolpyruvate carboxykinase genes in conscious rats. J Biol Chem. 1998 Jan 2;273(1):228–234. doi: 10.1074/jbc.273.1.228. [DOI] [PubMed] [Google Scholar]
- Massillon D., Stalmans W., van de Werve G., Bollen M. Identification of the glycogenic compound 5-iodotubercidin as a general protein kinase inhibitor. Biochem J. 1994 Apr 1;299(Pt 1):123–128. doi: 10.1042/bj2990123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer A. J., Baquet A., Gustafson L., van Woerkom G. M., Hue L. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem. 1992 Mar 25;267(9):5823–5828. [PubMed] [Google Scholar]
- Miot F., Keppens S., Erneux C., Wells J. N., De Wulf H. Involvement of a plasma membrane phosphodiesterase in the negative control of cyclic AMP levels by vasopressin in rat hepatocytes. Biochem Pharmacol. 1988 Sep 15;37(18):3447–3453. doi: 10.1016/0006-2952(88)90695-8. [DOI] [PubMed] [Google Scholar]
- Mithieux G., Daniele N., Payrastre B., Zitoun C. Liver microsomal glucose-6-phosphatase is competitively inhibited by the lipid products of phosphatidylinositol 3-kinase. J Biol Chem. 1998 Jan 2;273(1):17–19. doi: 10.1074/jbc.273.1.17. [DOI] [PubMed] [Google Scholar]
- Mithieux G. New knowledge regarding glucose-6 phosphatase gene and protein and their roles in the regulation of glucose metabolism. Eur J Endocrinol. 1997 Feb;136(2):137–145. doi: 10.1530/eje.0.1360137. [DOI] [PubMed] [Google Scholar]
- Moorhead G., MacKintosh C., Morrice N., Cohen P. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 1995 Apr 3;362(2):101–105. doi: 10.1016/0014-5793(95)00197-h. [DOI] [PubMed] [Google Scholar]
- Morgan N. G., Charest R., Blackmore P. F., Exton J. H. Potentiation of alpha 1-adrenergic responses in rat liver by a cAMP-dependent mechanism. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4208–4212. doi: 10.1073/pnas.81.13.4208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moule S. K., Denton R. M. Multiple signaling pathways involved in the metabolic effects of insulin. Am J Cardiol. 1997 Aug 4;80(3A):41A–49A. doi: 10.1016/s0002-9149(97)00457-8. [DOI] [PubMed] [Google Scholar]
- Mu J., Skurat A. V., Roach P. J. Glycogenin-2, a novel self-glucosylating protein involved in liver glycogen biosynthesis. J Biol Chem. 1997 Oct 31;272(44):27589–27597. doi: 10.1074/jbc.272.44.27589. [DOI] [PubMed] [Google Scholar]
- Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
- Mvumbi L., Bollen M., Stalmans W. Calcium ions and glycogen act synergistically as inhibitors of hepatic glycogen-synthase phosphatase. Biochem J. 1985 Dec 15;232(3):697–704. doi: 10.1042/bj2320697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nebioglu S., Wathanaronchai P., Nebioglu D., Pruden E. L., Gibson D. M. Mechanisms underlying enhanced glycogenolysis in livers of 3,5,3'-triiodothyronine-treated rats. Am J Physiol. 1990 Jan;258(1 Pt 1):E109–E116. doi: 10.1152/ajpendo.1990.258.1.E109. [DOI] [PubMed] [Google Scholar]
- Negami A. I., Sasaki H., Yamamura H. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):712–719. doi: 10.1016/0006-291x(85)91296-3. [DOI] [PubMed] [Google Scholar]
- Neubig R. R. Membrane organization in G-protein mechanisms. FASEB J. 1994 Sep;8(12):939–946. doi: 10.1096/fasebj.8.12.8088459. [DOI] [PubMed] [Google Scholar]
- Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
- Niculescu L., Veiga-da-Cunha M., Van Schaftingen E. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes. Biochem J. 1997 Jan 1;321(Pt 1):239–246. doi: 10.1042/bj3210239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishi T., Kido Y., Ogawa A., Furuya E., Mori T. Effect of fructose on glycogen synthesis in the perfused rat liver. Biochem Int. 1990;20(2):329–335. [PubMed] [Google Scholar]
- Niswender K. D., Shiota M., Postic C., Cherrington A. D., Magnuson M. A. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J Biol Chem. 1997 Sep 5;272(36):22570–22575. doi: 10.1074/jbc.272.36.22570. [DOI] [PubMed] [Google Scholar]
- Norcum M. T., Wilkinson D. A., Carlson M. C., Hainfeld J. F., Carlson G. M. Structure of phosphorylase kinase. A three-dimensional model derived from stained and unstained electron micrographs. J Mol Biol. 1994 Aug 5;241(1):94–102. doi: 10.1006/jmbi.1994.1476. [DOI] [PubMed] [Google Scholar]
- Nuttall F. Q., Gannon M. C. Allosteric regulation of glycogen synthase in liver. A physiological dilemma. J Biol Chem. 1993 Jun 25;268(18):13286–13290. [PubMed] [Google Scholar]
- O'Doherty R. M., Lehman D. L., Seoane J., Gómez-Foix A. M., Guinovart J. J., Newgard C. B. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem. 1996 Aug 23;271(34):20524–20530. doi: 10.1074/jbc.271.34.20524. [DOI] [PubMed] [Google Scholar]
- Oetjen E., Schweickhardt C., Unthan-Fechner K., Probst I. Stimulation of glucose production from glycogen by glucagon, noradrenaline and non-degradable adenosine analogues is counteracted by adenosine and ATP in cultured rat hepatocytes. Biochem J. 1990 Oct 15;271(2):337–344. doi: 10.1042/bj2710337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogilvie A., Bläsius R., Schulze-Lohoff E., Sterzel R. B. Adenine dinucleotides: a novel class of signalling molecules. J Auton Pharmacol. 1996 Dec;16(6):325–328. doi: 10.1111/j.1474-8673.1996.tb00045.x. [DOI] [PubMed] [Google Scholar]
- Okajima F., Tokumitsu Y., Kondo Y., Ui M. P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem. 1987 Oct 5;262(28):13483–13490. [PubMed] [Google Scholar]
- Owen D. J., Papageorgiou A. C., Garman E. F., Noble M. E., Johnson L. N. Expression, purification and crystallisation of phosphorylase kinase catalytic domain. J Mol Biol. 1995 Feb 24;246(3):374–381. doi: 10.1006/jmbi.1994.0092. [DOI] [PubMed] [Google Scholar]
- Pagliassotti M. J., Cherrington A. D. Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol. 1992;54:847–860. doi: 10.1146/annurev.ph.54.030192.004215. [DOI] [PubMed] [Google Scholar]
- Pagliassotti M. J., Holste L. C., Moore M. C., Neal D. W., Cherrington A. D. Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog. J Clin Invest. 1996 Jan 1;97(1):81–91. doi: 10.1172/JCI118410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peak M., Rochford J. J., Borthwick A. C., Yeaman S. J., Agius L. Signalling pathways involved in the stimulation of glycogen synthesis by insulin in rat hepatocytes. Diabetologia. 1998 Jan;41(1):16–25. doi: 10.1007/s001250050861. [DOI] [PubMed] [Google Scholar]
- Printen J. A., Brady M. J., Saltiel A. R. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997 Mar 7;275(5305):1475–1478. doi: 10.1126/science.275.5305.1475. [DOI] [PubMed] [Google Scholar]
- Printz R. L., Magnuson M. A., Granner D. K. Mammalian glucokinase. Annu Rev Nutr. 1993;13:463–496. doi: 10.1146/annurev.nu.13.070193.002335. [DOI] [PubMed] [Google Scholar]
- Quintana I., Grau M., Moreno F., Soler C., Ramírez I., Soley M. The early stimulation of glycolysis by epidermal growth factor in isolated rat hepatocytes is secondary to the glycogenolytic effect. Biochem J. 1995 Jun 15;308(Pt 3):889–894. doi: 10.1042/bj3080889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rahn T., Ridderstråle M., Tornqvist H., Manganiello V., Fredrikson G., Belfrage P., Degerman E. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cGMP-inhibited cAMP phosphodiesterase in rat adipocytes. Studies using the selective inhibitor wortmannin. FEBS Lett. 1994 Aug 22;350(2-3):314–318. doi: 10.1016/0014-5793(94)00797-7. [DOI] [PubMed] [Google Scholar]
- Rencurel F., Waeber G., Bonny C., Antoine B., Maulard P., Girard J., Leturque A. cAMP prevents the glucose-mediated stimulation of GLUT2 gene transcription in hepatocytes. Biochem J. 1997 Mar 1;322(Pt 2):441–448. doi: 10.1042/bj3220441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roach P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990 Sep;4(12):2961–2968. [PubMed] [Google Scholar]
- Robles-Flores M., Allende G., Piña E., García-Sáinz J. A. Cross-talk between glucagon- and adenosine-mediated signalling systems in rat hepatocytes: effects on cyclic AMP-phosphodiesterase activity. Biochem J. 1995 Dec 15;312(Pt 3):763–767. doi: 10.1042/bj3120763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
- Sanchez V. E., Carlson G. M. Isolation of an autoinhibitory region from the regulatory beta-subunit of phosphorylase kinase. J Biol Chem. 1993 Aug 25;268(24):17889–17895. [PubMed] [Google Scholar]
- Savage A., Zeng L., Houslay M. D. A role for protein kinase C-mediated phosphorylation in eliciting glucagon desensitization in rat hepatocytes. Biochem J. 1995 Apr 1;307(Pt 1):281–285. doi: 10.1042/bj3070281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlosser S. F., Burgstahler A. D., Nathanson M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9948–9953. doi: 10.1073/pnas.93.18.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schudt C. Influence of insulin, glucocorticoids and glucose on glycogen synthase activity in hepatocyte cultures. Biochim Biophys Acta. 1980 May 22;629(3):499–509. doi: 10.1016/0304-4165(80)90155-5. [DOI] [PubMed] [Google Scholar]
- Schäfer D., Hamm-Künzelmann B., Brand K. Glucose regulates the promoter activity of aldolase A and pyruvate kinase M2 via dephosphorylation of Sp1. FEBS Lett. 1997 Nov 17;417(3):325–328. doi: 10.1016/s0014-5793(97)01314-8. [DOI] [PubMed] [Google Scholar]
- Seoane J., Gómez-Foix A. M., O'Doherty R. M., Gómez-Ara C., Newgard C. B., Guinovart J. J. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem. 1996 Sep 27;271(39):23756–23760. doi: 10.1074/jbc.271.39.23756. [DOI] [PubMed] [Google Scholar]
- Seoane J., Trinh K., O'Doherty R. M., Gómez-Foix A. M., Lange A. J., Newgard C. B., Guinovart J. J. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J Biol Chem. 1997 Oct 24;272(43):26972–26977. doi: 10.1074/jbc.272.43.26972. [DOI] [PubMed] [Google Scholar]
- Shen J., Bao Y., Liu H. M., Lee P., Leonard J. V., Chen Y. T. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest. 1996 Jul 15;98(2):352–357. doi: 10.1172/JCI118799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimazu T. Neuronal regulation of hepatic glucose metabolism in mammals. Diabetes Metab Rev. 1987 Jan;3(1):185–206. doi: 10.1002/dmr.5610030109. [DOI] [PubMed] [Google Scholar]
- Smythe C., Cohen P. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem. 1991 Sep 15;200(3):625–631. doi: 10.1111/j.1432-1033.1991.tb16225.x. [DOI] [PubMed] [Google Scholar]
- Smythe C., Villar-Palasi C., Cohen P. Structural and functional studies on rabbit liver glycogenin. Eur J Biochem. 1989 Jul 15;183(1):205–209. doi: 10.1111/j.1432-1033.1989.tb14914.x. [DOI] [PubMed] [Google Scholar]
- Sprangers F., Sauerwein H. P., Romijn J. A., van Woerkom G. M., Meijer A. J. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes. Biochem J. 1998 Mar 1;330(Pt 2):1045–1049. doi: 10.1042/bj3301045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stalmans W., Bollen M., Mvumbi L. Control of glycogen synthesis in health and disease. Diabetes Metab Rev. 1987 Jan;3(1):127–161. doi: 10.1002/dmr.5610030107. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Cadefau J., Wera S., Bollen M. New insight into the regulation of liver glycogen metabolism by glucose. Biochem Soc Trans. 1997 Feb;25(1):19–25. doi: 10.1042/bst0250019. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Laloux M. Glucocorticoids and hepatic glycogen metabolism. Monogr Endocrinol. 1979;12:517–533. doi: 10.1007/978-3-642-81265-1_27. [DOI] [PubMed] [Google Scholar]
- Strickland W. G., Imazu M., Chrisman T. D., Exton J. H. Regulation of rat liver glycogen synthase. Roles of Ca2+, phosphorylase kinase, and phosphorylase a. J Biol Chem. 1983 May 10;258(9):5490–5497. [PubMed] [Google Scholar]
- Tan A. W., Nuttall F. Q. In vivo phosphorylation of liver glycogen synthase. Effect of glucose and glucagon treatment of liver cells on the distribution of the [32P]phosphate. Biochem Cell Biol. 1993 Jan-Feb;71(1-2):90–96. doi: 10.1139/o93-014. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Hayashi N., Kaneko A., Ito T., Miyoshi E., Sasaki Y., Fusamoto H., Kamada T. Epidermal growth factor induces dose-dependent calcium oscillations in single fura-2-loaded hepatocytes. Hepatology. 1992 Aug;16(2):479–486. doi: 10.1002/hep.1840160229. [DOI] [PubMed] [Google Scholar]
- Tang P. M., Bondor J. A., Swiderek K. M., DePaoli-Roach A. A. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 1991 Aug 25;266(24):15782–15789. [PubMed] [Google Scholar]
- Taylor R., Magnusson I., Rothman D. L., Cline G. W., Caumo A., Cobelli C., Shulman G. I. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996 Jan 1;97(1):126–132. doi: 10.1172/JCI118379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thon V. J., Khalil M., Cannon J. F. Isolation of human glycogen branching enzyme cDNAs by screening complementation in yeast. J Biol Chem. 1993 Apr 5;268(10):7509–7513. [PubMed] [Google Scholar]
- Toyoda Y., Miwa I., Kamiya M., Ogiso S., Nonogaki T., Aoki S., Okuda J. Evidence for glucokinase translocation by glucose in rat hepatocytes. Biochem Biophys Res Commun. 1994 Oct 14;204(1):252–256. doi: 10.1006/bbrc.1994.2452. [DOI] [PubMed] [Google Scholar]
- Urcelay E., Butta N., Manchón C. G., Ciprés G., Requero A. M., Ayuso M. S., Parrilla R. Role of protein kinase-C in the alpha 1-adrenoceptor-mediated responses of perfused rat liver. Endocrinology. 1993 Nov;133(5):2105–2115. doi: 10.1210/endo.133.5.8404660. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Davies D. R. Fructose administration stimulates glucose phosphorylation in the livers of anesthetized rats. FASEB J. 1991 Mar 1;5(3):326–330. doi: 10.1096/fasebj.5.3.2001793. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Detheux M., Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J. 1994 Apr 1;8(6):414–419. doi: 10.1096/fasebj.8.6.8168691. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E. Involvement of phosphorylase kinase inhibition in the effect of resorcinol and proglycosyn on glycogen metabolism in the liver. Eur J Biochem. 1995 Nov 15;234(1):301–307. doi: 10.1111/j.1432-1033.1995.301_c.x. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., de Hoffmann E. Effect of proglycosyn and other phenolic compounds on glycogen metabolism in isolated hepatocytes. Potential role of glucuronidated metabolites. Eur J Biochem. 1993 Dec 1;218(2):745–751. doi: 10.1111/j.1432-1033.1993.tb18429.x. [DOI] [PubMed] [Google Scholar]
- Van de Werve G., Hers H. G. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate. Biochem J. 1979 Jan 15;178(1):119–126. doi: 10.1042/bj1780119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandebroeck A., Bollen M., De Wulf H., Stalmans W. An assessment of the importance of intralysosomal and of alpha-amylolytic glycogenolysis in the liver of normal rats and of rats with a glycogen-storage disease. Eur J Biochem. 1985 Dec 16;153(3):621–628. doi: 10.1111/j.1432-1033.1985.tb09345.x. [DOI] [PubMed] [Google Scholar]
- Vandebroeck A., Uyttenhove K., Bollen M., Stalmans W. The hepatic glycogenolysis induced by reversible ischaemia or KCN is exclusively catalysed by phosphorylase a. Biochem J. 1988 Dec 1;256(2):685–688. doi: 10.1042/bj2560685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanstapel F., Doperé F., Stalmans W. The role of glycogen synthase phosphatase in the glucocorticoid-induced deposition of glycogen in foetal rat liver. Biochem J. 1980 Nov 15;192(2):607–612. doi: 10.1042/bj1920607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanstapel F., Waebens M., Van Hecke P., Decanniere C., Stalmans W. Modulation of maximal glycogenolysis in perfused rat liver by adenosine and ATP. Biochem J. 1991 Aug 1;277(Pt 3):597–602. doi: 10.1042/bj2770597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanstapel F., Waebens M., Van Hecke P., Decanniere C., Stalmans W. The cytosolic concentration of phosphate determines the maximal rate of glycogenolysis in perfused rat liver. Biochem J. 1990 Feb 15;266(1):207–212. doi: 10.1042/bj2660207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villar-Palasí C., Guinovart J. J. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997 Jun;11(7):544–558. [PubMed] [Google Scholar]
- Viskupic E., Cao Y., Zhang W., Cheng C., DePaoli-Roach A. A., Roach P. J. Rabbit skeletal muscle glycogenin. Molecular cloning and production of fully functional protein in Escherichia coli. J Biol Chem. 1992 Dec 25;267(36):25759–25763. [PubMed] [Google Scholar]
- Wasserman D. H., Spalding J. A., Lacy D. B., Colburn C. A., Goldstein R. E., Cherrington A. D. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am J Physiol. 1989 Jul;257(1 Pt 1):E108–E117. doi: 10.1152/ajpendo.1989.257.1.E108. [DOI] [PubMed] [Google Scholar]
- Watson K. A., Mitchell E. P., Johnson L. N., Son J. C., Bichard C. J., Orchard M. G., Fleet G. W., Oikonomakos N. G., Leonidas D. D., Kontou M. Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds. Biochemistry. 1994 May 17;33(19):5745–5758. doi: 10.1021/bi00185a011. [DOI] [PubMed] [Google Scholar]
- Wera S., Bollen M., Moens L., Stalmans W. Time-dependent pseudo-activation of hepatic glycogen synthase b by glucose 6-phosphate without involvement of protein phosphatases. Biochem J. 1996 Apr 1;315(Pt 1):91–96. doi: 10.1042/bj3150091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wera S., Bollen M., Stalmans W. Purification and characterization of the glycogen-bound protein phosphatase from rat liver. J Biol Chem. 1991 Jan 5;266(1):339–345. [PubMed] [Google Scholar]
- Wüllrich A., Hamacher C., Schneider A., Kilimann M. W. The multiphosphorylation domain of the phosphorylase kinase alpha M and alpha L subunits is a hotspot of differential mRNA processing and of molecular evolution. J Biol Chem. 1993 Nov 5;268(31):23208–23214. [PubMed] [Google Scholar]
- Zeng L., Houslay M. D. Insulin and vasopressin elicit inhibition of cholera-toxin-stimulated adenylate cyclase activity in both hepatocytes and the P9 immortalized hepatocyte cell line through an action involving protein kinase C. Biochem J. 1995 Dec 15;312(Pt 3):769–774. doi: 10.1042/bj3120769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- al-Habori M., Peak M., Thomas T. H., Agius L. The role of cell swelling in the stimulation of glycogen synthesis by insulin. Biochem J. 1992 Mar 15;282(Pt 3):789–796. doi: 10.1042/bj2820789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Beurden E. A., de Graaf M., Wendel U., Gitzelmann R., Berger R., van den Berg I. E. Autosomal recessive liver phosphorylase kinase deficiency caused by a novel splice-site mutation in the gene encoding the liver gamma subunit (PHKG2). Biochem Biophys Res Commun. 1997 Jul 30;236(3):544–548. doi: 10.1006/bbrc.1997.7006. [DOI] [PubMed] [Google Scholar]
- van de Werve G., Jeanrenaud B. Liver glycogen metabolism: an overview. Diabetes Metab Rev. 1987 Jan;3(1):47–78. doi: 10.1002/dmr.5610030104. [DOI] [PubMed] [Google Scholar]