Abstract
The Escherichia coli gamma-aminobutyric acid permease (GabP) is a plasma membrane protein from the amine-polyamine-choline (APC) superfamily. On the basis of hydropathy analysis, transporters from this family are thought to contain 12, 13 or 14 transmembrane domains. We have experimentally analysed the topography of GabP by using the cytoplasmically active LacZ (beta-galactosidase) and the periplasmically active PhoA (alkaline phosphatase) as complementary topological sensors. The enzymic activities of 32 GabP-LacZ hybrids and 43 GabP-PhoA hybrids provide mutually reinforcing lines of evidence that the E. coli GabP contains 12 transmembrane segments that traverse the membrane in a zig-zag fashion with both N- and C-termini facing the cytoplasm. Interestingly, the resulting model predicts that the functionally important 'consensus amphipathic region' (CAR) [Hu and King (1998) Biochem. J. 330, 771-776] is at least partly membrane-embedded in many amino acid transporters from bacteria and fungi, in contrast with the apparent situation in mouse cationic amino acid transporters (MCATs), in which this kinetically significant region is thought to be fully cytoplasmic [Sophianopoulou and Diallinas (1995) FEMS Microbiol. Rev. 16, 53-75]. To the extent that conserved domains serve similar functions, the resolution of this topological disparity stands to have family-wide implications on the mechanistic role of the CAR. The consensus transmembrane structure derived from this analysis of GabP provides a foundation for predicting the topological disposition of the CAR and other functionally important domains that are conserved throughout the APC transporter superfamily.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brechtel C. E., Hu L., King S. C. Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP. Uptake and counterflow of structurally diverse molecules. J Biol Chem. 1996 Jan 12;271(2):783–788. doi: 10.1074/jbc.271.2.783. [DOI] [PubMed] [Google Scholar]
- Brechtel C. E., King S. C. 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem J. 1998 Aug 1;333(Pt 3):565–571. doi: 10.1042/bj3330565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buhr A., Erni B. Membrane topology of the glucose transporter of Escherichia coli. J Biol Chem. 1993 Jun 5;268(16):11599–11603. [PubMed] [Google Scholar]
- Calamia J., Manoil C. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4937–4941. doi: 10.1073/pnas.87.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Closs E. I., Gräf P., Habermeier A., Cunningham J. M., Förstermann U. Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry. 1997 May 27;36(21):6462–6468. doi: 10.1021/bi962829p. [DOI] [PubMed] [Google Scholar]
- Closs E. I., Lyons C. R., Kelly C., Cunningham J. M. Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of a domain that determines the transport properties of the MCAT proteins. J Biol Chem. 1993 Oct 5;268(28):20796–20800. [PubMed] [Google Scholar]
- Cosgriff A. J., Pittard A. J. A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. J Bacteriol. 1997 May;179(10):3317–3323. doi: 10.1128/jb.179.10.3317-3323.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis J., Carlin A., Steffes C., Wu J., Liu J., Rosen B. P. Topological analysis of the lysine-specific permease of Escherichia coli. Microbiology. 1995 Aug;141(Pt 8):1927–1935. doi: 10.1099/13500872-141-8-1927. [DOI] [PubMed] [Google Scholar]
- Henderson P. J. Studies of translocation catalysis. Biosci Rep. 1991 Dec;11(6):477–538. doi: 10.1007/BF01130216. [DOI] [PubMed] [Google Scholar]
- Henderson P. J. The 12-transmembrane helix transporters. Curr Opin Cell Biol. 1993 Aug;5(4):708–721. doi: 10.1016/0955-0674(93)90144-f. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
- Holmgren M., Liu Y., Xu Y., Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996;35(7):797–804. doi: 10.1016/0028-3908(96)00129-3. [DOI] [PubMed] [Google Scholar]
- Hu L. A., King S. C. Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem J. 1998 Mar 1;330(Pt 2):771–776. doi: 10.1042/bj3300771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu L. A., King S. C. Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily. Restoration of Cys-300 to the Cys-less Gabp. J Biol Chem. 1998 Aug 7;273(32):20162–20167. doi: 10.1074/jbc.273.32.20162. [DOI] [PubMed] [Google Scholar]
- Huber F., Erni B. Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem. 1996 Aug 1;239(3):810–817. doi: 10.1111/j.1432-1033.1996.0810u.x. [DOI] [PubMed] [Google Scholar]
- Jennings M. L. Topography of membrane proteins. Annu Rev Biochem. 1989;58:999–1027. doi: 10.1146/annurev.bi.58.070189.005031. [DOI] [PubMed] [Google Scholar]
- Jones P. C., Sivaprasadarao A., Wray D., Findlay J. B. A method for determining transmembrane protein structure. Mol Membr Biol. 1996 Jan-Mar;13(1):53–60. doi: 10.3109/09687689609160575. [DOI] [PubMed] [Google Scholar]
- Jording D., Pühler A. The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline phosphatase (PhoA) and beta-galactosidase (LacZ). Mol Gen Genet. 1993 Oct;241(1-2):106–114. doi: 10.1007/BF00280207. [DOI] [PubMed] [Google Scholar]
- King S. C., Fleming S. R., Brechtel C. E. Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP. Specificity of Gab permease for heterocyclic inhibitors. J Biol Chem. 1995 Aug 25;270(34):19893–19897. doi: 10.1074/jbc.270.34.19893. [DOI] [PubMed] [Google Scholar]
- King S. C., Fleming S. R., Brechtel C. Pyridine carboxylic acids as inhibitors and substrates of the Escherichia coli gab permease encoded by gabP. J Bacteriol. 1995 Sep;177(18):5381–5382. doi: 10.1128/jb.177.18.5381-5382.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Manoil C. Analysis of membrane protein topology using alkaline phosphatase and beta-galactosidase gene fusions. Methods Cell Biol. 1991;34:61–75. doi: 10.1016/s0091-679x(08)61676-3. [DOI] [PubMed] [Google Scholar]
- Manoil C., Bailey J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J Mol Biol. 1997 Mar 28;267(2):250–263. doi: 10.1006/jmbi.1996.0881. [DOI] [PubMed] [Google Scholar]
- Manoil C., Beckwith J. A genetic approach to analyzing membrane protein topology. Science. 1986 Sep 26;233(4771):1403–1408. doi: 10.1126/science.3529391. [DOI] [PubMed] [Google Scholar]
- Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niegemann E., Schulz A., Bartsch K. Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene. Arch Microbiol. 1993;160(6):454–460. doi: 10.1007/BF00245306. [DOI] [PubMed] [Google Scholar]
- Pi J., Pittard A. J. Topology of the phenylalanine-specific permease of Escherichia coli. J Bacteriol. 1996 May;178(9):2650–2655. doi: 10.1128/jb.178.9.2650-2655.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pi J., Wookey P. J., Pittard A. J. Site-directed mutagenesis reveals the importance of conserved charged residues for the transport activity of the PheP permease of Escherichia coli. J Bacteriol. 1993 Nov;175(22):7500–7504. doi: 10.1128/jb.175.22.7500-7504.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiu X. Q., Jakes K. S., Finkelstein A., Slatin S. L. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane. J Biol Chem. 1994 Mar 11;269(10):7483–7488. [PubMed] [Google Scholar]
- Reizer J., Finley K., Kakuda D., MacLeod C. L., Reizer A., Saier M. H., Jr Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Protein Sci. 1993 Jan;2(1):20–30. doi: 10.1002/pro.5560020103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- San Millan J. L., Boyd D., Dalbey R., Wickner W., Beckwith J. Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. J Bacteriol. 1989 Oct;171(10):5536–5541. doi: 10.1128/jb.171.10.5536-5541.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarsero J. P., Pittard A. J. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions. J Bacteriol. 1995 Jan;177(2):297–306. doi: 10.1128/jb.177.2.297-306.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatin S. L., Qiu X. Q., Jakes K. S., Finkelstein A. Identification of a translocated protein segment in a voltage-dependent channel. Nature. 1994 Sep 8;371(6493):158–161. doi: 10.1038/371158a0. [DOI] [PubMed] [Google Scholar]
- Sophianopoulou V., Diallinas G. Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev. 1995 Jan;16(1):53–75. doi: 10.1111/j.1574-6976.1995.tb00155.x. [DOI] [PubMed] [Google Scholar]
- Tamura S., Nelson H., Tamura A., Nelson N. Short external loops as potential substrate binding site of gamma-aminobutyric acid transporters. J Biol Chem. 1995 Dec 1;270(48):28712–28715. doi: 10.1074/jbc.270.48.28712. [DOI] [PubMed] [Google Scholar]
- Traxler B., Boyd D., Beckwith J. The topological analysis of integral cytoplasmic membrane proteins. J Membr Biol. 1993 Feb;132(1):1–11. doi: 10.1007/BF00233047. [DOI] [PubMed] [Google Scholar]
- Vandenbol M., Jauniaux J. C., Grenson M. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene. 1989 Nov 15;83(1):153–159. doi: 10.1016/0378-1119(89)90413-7. [DOI] [PubMed] [Google Scholar]
- Weber E., Chevallier M. R., Jund R. Evolutionary relationship and secondary structure predictions in four transport proteins of Saccharomyces cerevisiae. J Mol Evol. 1988;27(4):341–350. doi: 10.1007/BF02101197. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]