Abstract
Streptomyces lividans CelB is a family-12 endoglucanase that hydrolyses cellulose with retention of anomeric configuration. A recent X-ray structure of the catalytic domain at 1.75 A resolution has led to the preliminary assignment of Glu-120 and Glu-203 as the catalytic nucleophile and general acid-base respectively [Sulzenbacher, Shareck, Morosoli, Dupont and Davies (1997) Biochemistry 36, 16032-16039]. The present study confirms the identity of the nucleophile by trapping the glycosyl-enzyme intermediate with the mechanism-based inactivator 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-cellobioside (2FDNPC). The kinetics of inactivation proceeded in a saturable fashion, yielding the parameters kinact=0.29+/-0.02 min-1 and Kinact=0.72+/-0.08 mM. Uncompetitive inhibition was observed at high concentrations of 2FDNPC (Ki=9+/-1 mM), a behaviour that was also observed with the substrate 2',4'-dinitrophenyl beta-D-cellobioside (kcat=40+/-1 s-1, Km=0.35+/-0.03 mM, Ki=24+/-4 mM). Protection against inactivation was afforded by the competitive inhibitor cellobiose. The electrospray ionization (ESI) mass spectrum of the intact labelled CelB indicated that the inactivator had labelled the enzyme stoichiometrically. Reactivation of the trapped intermediate occurred spontaneously (kH2O=0.0022 min-1) or via transglycosylation, with cellobiose acting as an acceptor ligand (kreact=0.024 min-1, Kreact=54 mM). Digestion of the labelled enzyme by pepsin followed by LC-ESI-tandem MS (MS-MS) operating in neutral loss mode identified a labelled, singly charged peptide of m/z 947.5 Da. Isolation of this peptide by HPLC and subsequent collision-induced fragmentation by ESI-MS-MS produced a daughter-ion spectrum that corresponded to a sequence (QTEIM) containing Glu-120. The nucleophile Glu-120 and the putative acid-base catalyst Glu-203 are conserved in all known family-12 sequences.
Full Text
The Full Text of this article is available as a PDF (652.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Day A. G., Withers S. G. The purification and characterization of a beta-glucosidase from Alcaligenes faecalis. Biochem Cell Biol. 1986 Sep;64(9):914–922. doi: 10.1139/o86-122. [DOI] [PubMed] [Google Scholar]
- Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Howard S., He S., Withers S. G. Identification of the active site nucleophile in jack bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride. J Biol Chem. 1998 Jan 23;273(4):2067–2072. doi: 10.1074/jbc.273.4.2067. [DOI] [PubMed] [Google Scholar]
- Kempton J. B., Withers S. G. Mechanism of Agrobacterium beta-glucosidase: kinetic studies. Biochemistry. 1992 Oct 20;31(41):9961–9969. doi: 10.1021/bi00156a015. [DOI] [PubMed] [Google Scholar]
- Lawson S. L., Wakarchuk W. W., Withers S. G. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Biochemistry. 1996 Aug 6;35(31):10110–10118. doi: 10.1021/bi960586v. [DOI] [PubMed] [Google Scholar]
- Lawson S. L., Wakarchuk W. W., Withers S. G. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase. Biochemistry. 1997 Feb 25;36(8):2257–2265. doi: 10.1021/bi9620215. [DOI] [PubMed] [Google Scholar]
- MacLeod A. M., Tull D., Rupitz K., Warren R. A., Withers S. G. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. Biochemistry. 1996 Oct 8;35(40):13165–13172. doi: 10.1021/bi9610616. [DOI] [PubMed] [Google Scholar]
- Mackenzie L. F., Davies G. J., Schülein M., Withers S. G. Identification of the catalytic nucleophile of endoglucanase I from Fusarium oxysporum by mass spectrometry. Biochemistry. 1997 May 13;36(19):5893–5901. doi: 10.1021/bi962962h. [DOI] [PubMed] [Google Scholar]
- Malet C., Planas A. Mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl beta-D-glucan oligosaccharides. Biochemistry. 1997 Nov 11;36(45):13838–13848. doi: 10.1021/bi9711341. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- Miao S., Ziser L., Aebersold R., Withers S. G. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. Biochemistry. 1994 Jun 14;33(23):7027–7032. doi: 10.1021/bi00189a002. [DOI] [PubMed] [Google Scholar]
- Namchuk M. N., Withers S. G. Mechanism of Agrobacterium beta-glucosidase: kinetic analysis of the role of noncovalent enzyme/substrate interactions. Biochemistry. 1995 Dec 12;34(49):16194–16202. doi: 10.1021/bi00049a035. [DOI] [PubMed] [Google Scholar]
- Saarilahti H. T., Henrissat B., Palva E. T. CelS: a novel endoglucanase identified from Erwinia carotovora subsp. carotovora. Gene. 1990 May 31;90(1):9–14. doi: 10.1016/0378-1119(90)90433-r. [DOI] [PubMed] [Google Scholar]
- Schou C., Rasmussen G., Kaltoft M. B., Henrissat B., Schülein M. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem. 1993 Nov 1;217(3):947–953. doi: 10.1111/j.1432-1033.1993.tb18325.x. [DOI] [PubMed] [Google Scholar]
- Sinnott M. L. Ions, ion-pairs and catalysis by the lacZ beta-galactosidase of Escherichia coli. FEBS Lett. 1978 Oct 1;94(1):1–9. doi: 10.1016/0014-5793(78)80894-1. [DOI] [PubMed] [Google Scholar]
- Street I. P., Kempton J. B., Withers S. G. Inactivation of a beta-glucosidase through the accumulation of a stable 2-deoxy-2-fluoro-alpha-D-glucopyranosyl-enzyme intermediate: a detailed investigation. Biochemistry. 1992 Oct 20;31(41):9970–9978. doi: 10.1021/bi00156a016. [DOI] [PubMed] [Google Scholar]
- Sulzenbacher G., Shareck F., Morosoli R., Dupont C., Davies G. J. The Streptomyces lividans family 12 endoglucanase: construction of the catalytic cre, expression, and X-ray structure at 1.75 A resolution. Biochemistry. 1997 Dec 23;36(51):16032–16039. doi: 10.1021/bi972407v. [DOI] [PubMed] [Google Scholar]
- Tull D., Miao S., Withers S. G., Aebersold R. Identification of derivatized peptides without radiolabels: tandem mass spectrometric localization of the tagged active-site nucleophiles of two cellulases and a beta-glucosidase. Anal Biochem. 1995 Jan 20;224(2):509–514. doi: 10.1006/abio.1995.1080. [DOI] [PubMed] [Google Scholar]
- Törrönen A., Kubicek C. P., Henrissat B. Amino acid sequence similarities between low molecular weight endo-1,4-beta-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett. 1993 Apr 26;321(2-3):135–139. doi: 10.1016/0014-5793(93)80094-b. [DOI] [PubMed] [Google Scholar]
- Wakarchuk W. W., Campbell R. L., Sung W. L., Davoodi J., Yaguchi M. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 1994 Mar;3(3):467–475. doi: 10.1002/pro.5560030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Q., Trimbur D., Graham R., Warren R. A., Withers S. G. Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants. Biochemistry. 1995 Nov 7;34(44):14554–14562. doi: 10.1021/bi00044a034. [DOI] [PubMed] [Google Scholar]
- Wang Q., Tull D., Meinke A., Gilkes N. R., Warren R. A., Aebersold R., Withers S. G. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. J Biol Chem. 1993 Jul 5;268(19):14096–14102. [PubMed] [Google Scholar]
- Wittmann S., Shareck F., Kluepfel D., Morosoli R. Purification and characterization of the CelB endoglucanase from Streptomyces lividans 66 and DNA sequence of the encoding gene. Appl Environ Microbiol. 1994 May;60(5):1701–1703. doi: 10.1128/aem.60.5.1701-1703.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]