Abstract
We reported previously that a protein tyrosine phosphatase (PTP) activity is associated with the immunoprecipitated hepatocyte growth factor (HGF) receptor, also known as Met. The activity increased reversibly when Met was stimulated by HGF and decreased when Met was inactivated by PMA. To identify the PTP-binding region, we used deletion mutants of the receptor beta-subunit. The PTP activity did not associate with Tpr-Met, a construct containing residues 1010-1390 of Met fused to Tpr. In contrast, PTP activity was present when the expressed protein contained the full juxtamembrane region (residues 956-1390 of Met) or part of this region (residues 957-1390 or 995-1390), indicating that the PTP-binding region is between residues 995 and 1009. This region includes Tyr1003, a site involved in Met downstream signalling. Incubation of Met immunoprecipitated from GTL-16 cells with an 8-mer phosphopeptide derived from residues 1003-1010 induced a marked decrease in the associated PTP activity, suggesting that the peptide reproduced the PTP-binding region. Mutation of Glu, Asp or Arg at positions -4, -1 or +1 respectively relative to Tyr1003 in a 9-mer peptide (residues 999-1007) abolished the ability of the peptide to decrease the PTP activity associated with Met. Phosphorylation of Tyr1003 was not required for PTP binding, since: (1) both phospho- and dephospho-peptides on a solid bead bound PTP activity from a GTL-16 cell extract, and (2) PTP activity was associated with a Met deletion mutant lacking residues 1-955 in which Tyr1003 had been changed into Phe. In order to partially purify the PTP from the GTL-16 cell extract, an affinity column was prepared using the Met-derived peptide comprising residues 998-1007. Less than 0.1% of the total cellular PTP was retained by the column, and was eluted with low salt concentrations. Using antibodies, this PTP was identified as PTP-S, a soluble PTP present in epithelial cells and fibroblasts.
Full Text
The Full Text of this article is available as a PDF (356.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bardelli A., Longati P., Gramaglia D., Stella M. C., Comoglio P. M. Gab1 coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene. 1997 Dec 18;15(25):3103–3111. doi: 10.1038/sj.onc.1201561. [DOI] [PubMed] [Google Scholar]
- Bardelli A., Pugliese L., Comoglio P. M. "Invasive-growth" signaling by the Met/HGF receptor: the hereditary renal carcinoma connection. Biochim Biophys Acta. 1997 Dec 9;1333(3):M41–M51. doi: 10.1016/s0304-419x(97)00026-7. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Charbonneau H., Tonks N. K. 1002 protein phosphatases? Annu Rev Cell Biol. 1992;8:463–493. doi: 10.1146/annurev.cb.08.110192.002335. [DOI] [PubMed] [Google Scholar]
- Gandino L., Munaron L., Naldini L., Ferracini R., Magni M., Comoglio P. M. Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. J Biol Chem. 1991 Aug 25;266(24):16098–16104. [PubMed] [Google Scholar]
- Giordano S., Ponzetto C., Di Renzo M. F., Cooper C. S., Comoglio P. M. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989 May 11;339(6220):155–156. doi: 10.1038/339155a0. [DOI] [PubMed] [Google Scholar]
- Gonzatti-Haces M., Seth A., Park M., Copeland T., Oroszlan S., Vande Woude G. F. Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci U S A. 1988 Jan;85(1):21–25. doi: 10.1073/pnas.85.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamatkar S., Radha V., Nambirajan S., Reddy R. S., Swarup G. Two splice variants of a tyrosine phosphatase differ in substrate specificity, DNA binding, and subcellular location. J Biol Chem. 1996 Oct 25;271(43):26755–26761. doi: 10.1074/jbc.271.43.26755. [DOI] [PubMed] [Google Scholar]
- Kulas D. T., Goldstein B. J., Mooney R. A. The transmembrane protein-tyrosine phosphatase LAR modulates signaling by multiple receptor tyrosine kinases. J Biol Chem. 1996 Jan 12;271(2):748–754. doi: 10.1074/jbc.271.2.748. [DOI] [PubMed] [Google Scholar]
- Li P. M., Zhang W. R., Goldstein B. J. Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells. Cell Signal. 1996 Nov;8(7):467–473. doi: 10.1016/s0898-6568(96)00101-5. [DOI] [PubMed] [Google Scholar]
- Mauro L. J., Dixon J. E. 'Zip codes' direct intracellular protein tyrosine phosphatases to the correct cellular 'address'. Trends Biochem Sci. 1994 Apr;19(4):151–155. doi: 10.1016/0968-0004(94)90274-7. [DOI] [PubMed] [Google Scholar]
- Naldini L., Weidner K. M., Vigna E., Gaudino G., Bardelli A., Ponzetto C., Narsimhan R. P., Hartmann G., Zarnegar R., Michalopoulos G. K. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991 Oct;10(10):2867–2878. doi: 10.1002/j.1460-2075.1991.tb07836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park M., Dean M., Cooper C. S., Schmidt M., O'Brien S. J., Blair D. G., Vande Woude G. F. Mechanism of met oncogene activation. Cell. 1986 Jun 20;45(6):895–904. doi: 10.1016/0092-8674(86)90564-7. [DOI] [PubMed] [Google Scholar]
- Perkins L. A., Larsen I., Perrimon N. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell. 1992 Jul 24;70(2):225–236. doi: 10.1016/0092-8674(92)90098-w. [DOI] [PubMed] [Google Scholar]
- Pinna L. A., Donella-Deana A. Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochim Biophys Acta. 1994 Jul 21;1222(3):415–431. doi: 10.1016/0167-4889(94)90050-7. [DOI] [PubMed] [Google Scholar]
- Ponzetto C., Bardelli A., Maina F., Longati P., Panayotou G., Dhand R., Waterfield M. D., Comoglio P. M. A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Mol Cell Biol. 1993 Aug;13(8):4600–4608. doi: 10.1128/mcb.13.8.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponzetto C., Bardelli A., Zhen Z., Maina F., dalla Zonca P., Giordano S., Graziani A., Panayotou G., Comoglio P. M. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994 Apr 22;77(2):261–271. doi: 10.1016/0092-8674(94)90318-2. [DOI] [PubMed] [Google Scholar]
- Puntoni F., Villa-Moruzzi E. Protein phosphatase-1 alpha, gamma 1, and delta: changes in phosphorylation and activity in mitotic HeLa cells and in cells released from the mitotic block. Arch Biochem Biophys. 1997 Apr 15;340(2):177–184. doi: 10.1006/abbi.1997.9889. [DOI] [PubMed] [Google Scholar]
- Radha V., Nambirajan S., Swarup G. Subcellular localization of a protein-tyrosine phosphatase: evidence for association with chromatin. Biochem J. 1994 Apr 1;299(Pt 1):41–47. doi: 10.1042/bj2990041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun H., Tonks N. K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci. 1994 Nov;19(11):480–485. doi: 10.1016/0968-0004(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Swarup G., Kamatkar S., Radha V., Rema V. Molecular cloning and expression of a protein-tyrosine phosphatase showing homology with transcription factors Fos and Jun. FEBS Lett. 1991 Mar 11;280(1):65–69. doi: 10.1016/0014-5793(91)80205-h. [DOI] [PubMed] [Google Scholar]
- Tonks N. K., Diltz C. D., Fischer E. H. Purification and assay of CD45: an integral membrane protein-tyrosine phosphatase. Methods Enzymol. 1991;201:442–451. doi: 10.1016/0076-6879(91)01040-9. [DOI] [PubMed] [Google Scholar]
- Tonks N. K., Neel B. G. From form to function: signaling by protein tyrosine phosphatases. Cell. 1996 Nov 1;87(3):365–368. doi: 10.1016/s0092-8674(00)81357-4. [DOI] [PubMed] [Google Scholar]
- Villa-Moruzzi E., Lapi S., Prat M., Gaudino G., Comoglio P. M. A protein tyrosine phosphatase activity associated with the hepatocyte growth factor/scatter factor receptor. J Biol Chem. 1993 Aug 25;268(24):18176–18180. [PubMed] [Google Scholar]
- Walton K. M., Dixon J. E. Protein tyrosine phosphatases. Annu Rev Biochem. 1993;62:101–120. doi: 10.1146/annurev.bi.62.070193.000533. [DOI] [PubMed] [Google Scholar]
- Weidner K. M., Sachs M., Riethmacher D., Birchmeier W. Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2597–2601. doi: 10.1073/pnas.92.7.2597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhen Z., Giordano S., Longati P., Medico E., Campiglio M., Comoglio P. M. Structural and functional domains critical for constitutive activation of the HGF-receptor (Met). Oncogene. 1994 Jun;9(6):1691–1697. [PubMed] [Google Scholar]
- Zheng X. M., Wang Y., Pallen C. J. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature. 1992 Sep 24;359(6393):336–339. doi: 10.1038/359336a0. [DOI] [PubMed] [Google Scholar]
