Abstract
Sphingomyelin (SM) and cholesterol content is positively correlated in cellular membranes, and in several pathological and experimental conditions there is evidence for coregulation. The potential role of oxysterols and oxysterol binding protein (OSBP) in mediating the coregulation of cholesterol and SM was examined using Chinese hamster ovary (CHO) and cholesterol auxotrophic, sterol regulatory defective (SRD) 6 cells. SRD 6 cells grown in the presence or absence of cholesterol for 24 h displayed a 30-50% reduction in SM synthesis compared with control CHO 7 cells. SM synthesis in CHO 7 and cholesterol-supplemented SRD 6 cells was stimulated 2-fold by 25-hydroxycholesterol, but cholesterol-starved SRD 6 cells were unresponsive. Basal and 25-hydroxycholesterol-stimulated SM synthesis was also inhibited in lovastatin-treated wild-type CHO-K1 cells. Lack of 25-hydroxycholesterol activation of SM synthesis in cholesterol-starved SRD 6 and lovastatin-treated CHO-K1 cells was correlated with dephosphorylation of OSBP. In SRD 6 cells, this was evident after 12 h of cholesterol depletion, it occurred equally at all phosphorylation sites and was exacerbated by 25-hydroxycholesterol. Unlike CHO 7 cells, where OSBP was observed in small vesicles and the cytoplasm, OSBP in cholesterol-starved SRD 6 cells was constitutively localized in the Golgi apparatus. Supplementation with non-lipoprotein cholesterol promoted redistribution to vesicles and the cytoplasm. Similarly, OSBP in CHO-K1 cells grown in delipidated serum was predominantly in the Golgi apparatus. Low-density lipoprotein (LDL) supplementation of CHO-K1 cells caused the redistribution of OSBP to the cytoplasm and small vesicles, and this effect was blocked by pharmacological agents ¿3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one and progesterone¿, which inhibited LDL cholesterol efflux from lysosomes. The results showed that localization of OSBP between the Golgi apparatus and a cytoplasmic/vesicular compartment was responsive to changes in cholesterol content and trafficking. In cholesterol depleted SRD 6 cells, this was accompanied by dephosphorylation of OSBP and attenuation of 25-hydroxycholesterol activation of SM synthesis.
Full Text
The Full Text of this article is available as a PDF (534.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chatterjee S., Clarke K. S., Kwiterovich P. O., Jr Regulation of synthesis of lactosylceramide and long chain bases in normal and familial hypercholesterolemic cultured proximal tubular cells. J Biol Chem. 1986 Oct 15;261(29):13474–13479. [PubMed] [Google Scholar]
- Chen H., Born E., Mathur S. N., Field F. J. Cholesterol and sphingomyelin syntheses are regulated independently in cultured human intestinal cells, CaCo-2: role of membrane cholesterol and sphingomyelin content. J Lipid Res. 1993 Dec;34(12):2159–2167. [PubMed] [Google Scholar]
- Cheng D., Chang C. C., Qu X., Chang T. Y. Activation of acyl-coenzyme A:cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem. 1995 Jan 13;270(2):685–695. doi: 10.1074/jbc.270.2.685. [DOI] [PubMed] [Google Scholar]
- Coxey R. A., Pentchev P. G., Campbell G., Blanchette-Mackie E. J. Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J Lipid Res. 1993 Jul;34(7):1165–1176. [PubMed] [Google Scholar]
- Dawson P. A., Ridgway N. D., Slaughter C. A., Brown M. S., Goldstein J. L. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem. 1989 Oct 5;264(28):16798–16803. [PubMed] [Google Scholar]
- De Matteis M. A., Santini G., Kahn R. A., Di Tullio G., Luini A. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature. 1993 Aug 26;364(6440):818–821. doi: 10.1038/364818a0. [DOI] [PubMed] [Google Scholar]
- Evans M. J., Metherall J. E. Loss of transcriptional activation of three sterol-regulated genes in mutant hamster cells. Mol Cell Biol. 1993 Sep;13(9):5175–5185. doi: 10.1128/mcb.13.9.5175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang M., Kearns B. G., Gedvilaite A., Kagiwada S., Kearns M., Fung M. K., Bankaitis V. A. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 1996 Dec 2;15(23):6447–6459. [PMC free article] [PubMed] [Google Scholar]
- Futerman A. H., Pagano R. E. Use of N-([1-14C]hexanoyl)-D-erythro-sphingolipids to assay sphingolipid metabolism. Methods Enzymol. 1992;209:437–446. doi: 10.1016/0076-6879(92)09054-7. [DOI] [PubMed] [Google Scholar]
- Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
- Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
- Gupta A. K., Rudney H. Plasma membrane sphingomyelin and the regulation of HMG-CoA reductase activity and cholesterol biosynthesis in cell cultures. J Lipid Res. 1991 Jan;32(1):125–136. [PubMed] [Google Scholar]
- Hanada K., Horii M., Akamatsu Y. Functional reconstitution of sphingomyelin synthase in Chinese hamster ovary cell membranes. Biochim Biophys Acta. 1991 Nov 5;1086(2):151–156. doi: 10.1016/0005-2760(91)90002-y. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Harris I. R., Farrell A. M., Holleran W. M., Jackson S., Grunfeld C., Elias P. M., Feingold K. R. Parallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis. J Lipid Res. 1998 Feb;39(2):412–422. [PubMed] [Google Scholar]
- Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
- Jiang B., Brown J. L., Sheraton J., Fortin N., Bussey H. A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast. 1994 Mar;10(3):341–353. doi: 10.1002/yea.320100307. [DOI] [PubMed] [Google Scholar]
- Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature. 1997 May 1;387(6628):101–105. doi: 10.1038/387101a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilsdonk E. P., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995 Jul 21;270(29):17250–17256. doi: 10.1074/jbc.270.29.17250. [DOI] [PubMed] [Google Scholar]
- Kudchodkar B. J., Albers J. J., Bierman E. L. Effect of positively charged sphingomyelin liposomes on cholesterol metabolism of cells in culture. Atherosclerosis. 1983 Mar;46(3):353–367. doi: 10.1016/0021-9150(83)90184-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lagace T. A., Byers D. M., Cook H. W., Ridgway N. D. Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain. Biochem J. 1997 Aug 15;326(Pt 1):205–213. doi: 10.1042/bj3260205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
- Lange Y. Tracking cell cholesterol with cholesterol oxidase. J Lipid Res. 1992 Mar;33(3):315–321. [PubMed] [Google Scholar]
- Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
- Liscum L., Underwood K. W. Intracellular cholesterol transport and compartmentation. J Biol Chem. 1995 Jun 30;270(26):15443–15446. doi: 10.1074/jbc.270.26.15443. [DOI] [PubMed] [Google Scholar]
- Liu P., Anderson R. G. Compartmentalized production of ceramide at the cell surface. J Biol Chem. 1995 Nov 10;270(45):27179–27185. doi: 10.1074/jbc.270.45.27179. [DOI] [PubMed] [Google Scholar]
- Lopez J. M., Bennett M. K., Sanchez H. B., Rosenfeld J. M., Osborne T. F. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1049–1053. doi: 10.1073/pnas.93.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin O. C., Comly M. E., Blanchette-Mackie E. J., Pentchev P. G., Pagano R. E. Cholesterol deprivation affects the fluorescence properties of a ceramide analog at the Golgi apparatus of living cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2661–2665. doi: 10.1073/pnas.90.7.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merrill A. H., Jr Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells. Biochim Biophys Acta. 1983 Dec 20;754(3):284–291. doi: 10.1016/0005-2760(83)90144-3. [DOI] [PubMed] [Google Scholar]
- Merrill A. H., Jr, Lingrell S., Wang E., Nikolova-Karakashian M., Vales T. R., Vance D. E. Sphingolipid biosynthesis de novo by rat hepatocytes in culture. Ceramide and sphingomyelin are associated with, but not required for, very low density lipoprotein secretion. J Biol Chem. 1995 Jun 9;270(23):13834–13841. doi: 10.1074/jbc.270.23.13834. [DOI] [PubMed] [Google Scholar]
- Metherall J. E., Goldstein J. L., Luskey K. L., Brown M. S. Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells. J Biol Chem. 1989 Sep 15;264(26):15634–15641. [PubMed] [Google Scholar]
- Neufeld E. B., Cooney A. M., Pitha J., Dawidowicz E. A., Dwyer N. K., Pentchev P. G., Blanchette-Mackie E. J. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem. 1996 Aug 30;271(35):21604–21613. doi: 10.1074/jbc.271.35.21604. [DOI] [PubMed] [Google Scholar]
- Oda T., Chen C. H., Wu H. C. Ceramide reverses brefeldin A (BFA) resistance in BFA-resistant cell lines. J Biol Chem. 1995 Feb 24;270(8):4088–4092. doi: 10.1074/jbc.270.8.4088. [DOI] [PubMed] [Google Scholar]
- Okwu A. K., Xu X. X., Shiratori Y., Tabas I. Regulation of the threshold for lipoprotein-induced acyl-CoA:cholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content. J Lipid Res. 1994 Apr;35(4):644–655. [PubMed] [Google Scholar]
- Orci L., Montesano R., Meda P., Malaisse-Lagae F., Brown D., Perrelet A., Vassalli P. Heterogeneous distribution of filipin--cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci U S A. 1981 Jan;78(1):293–297. doi: 10.1073/pnas.78.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagano R. E. What is the fate of diacylglycerol produced at the Golgi apparatus? Trends Biochem Sci. 1988 Jun;13(6):202–205. doi: 10.1016/0968-0004(88)90082-5. [DOI] [PubMed] [Google Scholar]
- Patton S. Correlative relationship of cholesterol and sphingomyelin in cell membranes. J Theor Biol. 1970 Dec;29(3):489–491. doi: 10.1016/0022-5193(70)90111-6. [DOI] [PubMed] [Google Scholar]
- Ridgway N. D. 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J Lipid Res. 1995 Jun;36(6):1345–1358. [PubMed] [Google Scholar]
- Ridgway N. D., Badiani K., Byers D. M., Cook H. W. Inhibition of phosphorylation of the oxysterol binding protein by brefeldin A. Biochim Biophys Acta. 1998 Feb 5;1390(1):37–51. doi: 10.1016/s0005-2760(97)00167-7. [DOI] [PubMed] [Google Scholar]
- Ridgway N. D., Dawson P. A., Ho Y. K., Brown M. S., Goldstein J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol. 1992 Jan;116(2):307–319. doi: 10.1083/jcb.116.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenwald A. G., Pagano R. E. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J Biol Chem. 1993 Mar 5;268(7):4577–4579. [PubMed] [Google Scholar]
- Sakai J., Duncan E. A., Rawson R. B., Hua X., Brown M. S., Goldstein J. L. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28;85(7):1037–1046. doi: 10.1016/s0092-8674(00)81304-5. [DOI] [PubMed] [Google Scholar]
- Scheek S., Brown M. S., Goldstein J. L. Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11179–11183. doi: 10.1073/pnas.94.21.11179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimano H., Horton J. D., Hammer R. E., Shimomura I., Brown M. S., Goldstein J. L. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest. 1996 Oct 1;98(7):1575–1584. doi: 10.1172/JCI118951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiratori Y., Okwu A. K., Tabas I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 15;269(15):11337–11348. [PubMed] [Google Scholar]
- Slotte J. P., Bierman E. L. Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J. 1988 Mar 15;250(3):653–658. doi: 10.1042/bj2500653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storey M. K., Byers D. M., Cook H. W., Ridgway N. D. Decreased phosphatidylcholine biosynthesis and abnormal distribution of CTP:phosphocholine cytidylyltransferase in cholesterol auxotrophic Chinese hamster ovary cells. J Lipid Res. 1997 Apr;38(4):711–722. [PubMed] [Google Scholar]
- Tabas I., Rosoff W. J., Boykow G. C. Acyl coenzyme A:cholesterol acyl transferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate. J Biol Chem. 1988 Jan 25;263(3):1266–1272. [PubMed] [Google Scholar]
- Verdery R. B., 3rd, Theolis R., Jr Regulation of sphingomyelin long chain base synthesis in human fibroblasts in culture. Role of lipoproteins and the low density lipoprotein receptor. J Biol Chem. 1982 Feb 10;257(3):1412–1417. [PubMed] [Google Scholar]