Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):257–269. doi: 10.1042/bj3360257

Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells.

M M Zegers 1, D Hoekstra 1
PMCID: PMC1219866  PMID: 9820799

Abstract

Epithelial cells express plasma-membrane polarity in order to meet functional requirements that are imposed by their interaction with different extracellular environments. Thus apical and basolateral membrane domains are distinguished that are separated by tight junctions in order to maintain the specific lipid and protein composition of each domain. In hepatic cells, the plasma membrane is also polarized, containing a sinusoidal (basolateral) and a bile canalicular (apical)-membrane domain. Relevant to the biogenesis of these domains are issues concerning sorting, (co-)transport and regulation of transport of domain-specific membrane components. In epithelial cells, specific proteins and lipids, destined for the apical membrane, are sorted in the trans-Golgi network (TGN), which involves their sequestration into cholesterol/sphingolipid 'rafts', followed by 'direct' transport to the apical membrane. In hepatic cells, a direct apical transport pathway also exists, as revealed by transport of sphingolipids from TGN to the apical membrane. This is remarkable, since in these cells numerous apical membrane proteins are 'indirectly' sorted, i.e. they are first transferred to the basolateral membrane prior to their subsequent transcytosis to the apical membrane. This raises intriguing questions as to the existence of specific lipid rafts in hepatocytes. As demonstrated in studies with HepG2 cells, it has become evident that, in hepatic cells, apical transport pathways can be regulated by protein kinase activity, which in turn modulates cell polarity. Finally, an important physiological function of hepatic cells is their involvement in intracellular transport and secretion of bile-specific lipids. Mechanisms of these transport processes, including the role of multidrug-resistant proteins in lipid translocation, will be discussed in the context of intracellular vesicular transport. Taken together, hepatic cell systems provide an important asset to studies aimed at elucidating mechanisms of sorting and trafficking of lipids (and proteins) in polarized cells in general.

Full Text

The Full Text of this article is available as a PDF (282.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed H. A., Jazrawi R. P., Goggin P. M., Dormandy J., Northfield T. C. Intrahepatic biliary cholesterol and phospholipid transport in humans: effect of obesity and cholesterol cholelithiasis. J Lipid Res. 1995 Dec;36(12):2562–2573. [PubMed] [Google Scholar]
  2. Alb J. G., Jr, Kearns M. A., Bankaitis V. A. Phospholipid metabolism and membrane dynamics. Curr Opin Cell Biol. 1996 Aug;8(4):534–541. doi: 10.1016/s0955-0674(96)80032-9. [DOI] [PubMed] [Google Scholar]
  3. Ali N., Evans W. H. Priority targeting of glycosyl-phosphatidylinositol-anchored proteins to the bile-canalicular (apical) plasma membrane of hepatocytes. Involvement of 'late' endosomes. Biochem J. 1990 Oct 1;271(1):193–199. doi: 10.1042/bj2710193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alvaro D., Benedetti A., Gigliozzi A., Bini A., Furfaro S., Bassotti C., La Rosa T., Jezequel A. M., Capocaccia L. Effect of Brefeldin A on transcytotic vesicular pathway and bile secretion: a study on the isolated perfused rat liver and isolated rat hepatocyte couplets. Hepatology. 1995 Feb;21(2):450–459. [PubMed] [Google Scholar]
  5. Apodaca G., Katz L. A., Mostov K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol. 1994 Apr;125(1):67–86. doi: 10.1083/jcb.125.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Babia T., Kok J. W., van der Haar M., Kalicharan R., Hoekstra D. Transport of biosynthetic sphingolipids from Golgi to plasma membrane in HT29 cells: involvement of different carrier vesicle populations. Eur J Cell Biol. 1994 Apr;63(2):172–181. [PubMed] [Google Scholar]
  7. Barnwell S. G., Lowe P. J., Coleman R. The effects of colchicine on secretion into bile of bile salts, phospholipids, cholesterol and plasma membrane enzymes: bile salts are secreted unaccompanied by phospholipids and cholesterol. Biochem J. 1984 Jun 15;220(3):723–731. doi: 10.1042/bj2200723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barroso M., Sztul E. S. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J Cell Biol. 1994 Jan;124(1-2):83–100. doi: 10.1083/jcb.124.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bartles J. R., Feracci H. M., Stieger B., Hubbard A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol. 1987 Sep;105(3):1241–1251. doi: 10.1083/jcb.105.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Benedetti A., Strazzabosco M., Ng O. C., Boyer J. L. Regulation of activity and apical targeting of the Cl-/HCO3- exchanger in rat hepatocytes. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):792–796. doi: 10.1073/pnas.91.2.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bennett M. K., Wandinger-Ness A., Simons K. Release of putative exocytic transport vesicles from perforated MDCK cells. EMBO J. 1988 Dec 20;7(13):4075–4085. doi: 10.1002/j.1460-2075.1988.tb03301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Berr F., Meier P. J., Stieger B. Evidence for the presence of a phosphatidylcholine translocator in isolated rat liver canalicular plasma membrane vesicles. J Biol Chem. 1993 Feb 25;268(6):3976–3979. [PubMed] [Google Scholar]
  13. Bertho P., Moreau P., Morré D. J., Cassagne C. Monensin blocks the transfer of very long chain fatty acid containing lipids to the plasma membrane of leek seedlings. Evidence for lipid sorting based on fatty acyl chain length. Biochim Biophys Acta. 1991 Nov 18;1070(1):127–134. doi: 10.1016/0005-2736(91)90154-z. [DOI] [PubMed] [Google Scholar]
  14. Beuers U., Throckmorton D. C., Anderson M. S., Isales C. M., Thasler W., Kullak-Ublick G. A., Sauter G., Koebe H. G., Paumgartner G., Boyer J. L. Tauroursodeoxycholic acid activates protein kinase C in isolated rat hepatocytes. Gastroenterology. 1996 May;110(5):1553–1563. doi: 10.1053/gast.1996.v110.pm8613063. [DOI] [PubMed] [Google Scholar]
  15. Bishop W. R., Bell R. M. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Annu Rev Cell Biol. 1988;4:579–610. doi: 10.1146/annurev.cb.04.110188.003051. [DOI] [PubMed] [Google Scholar]
  16. Boyer J. L., Soroka C. J. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology. 1995 Nov;109(5):1600–1611. doi: 10.1016/0016-5085(95)90649-5. [DOI] [PubMed] [Google Scholar]
  17. Brignoni M., Pignataro O. P., Rodriguez M. L., Alvarez A., Vega-Salas D. E., Rodriguez-Boulan E., Salas P. J. Cyclic AMP modulates the rate of 'constitutive' exocytosis of apical membrane proteins in Madin-Darby canine kidney cells. J Cell Sci. 1995 May;108(Pt 5):1931–1943. doi: 10.1242/jcs.108.5.1931. [DOI] [PubMed] [Google Scholar]
  18. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  19. Burger K. N., van der Bijl P., van Meer G. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J Cell Biol. 1996 Apr;133(1):15–28. doi: 10.1083/jcb.133.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Burgoyne R. D. Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta. 1991 Jul 22;1071(2):174–202. doi: 10.1016/0304-4157(91)90024-q. [DOI] [PubMed] [Google Scholar]
  21. Cardone M. H., Smith B. L., Song W., Mochly-Rosen D., Mostov K. E. Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in MDCK cells. J Cell Biol. 1994 Mar;124(5):717–727. doi: 10.1083/jcb.124.5.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Casanova J. E., Breitfeld P. P., Ross S. A., Mostov K. E. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science. 1990 May 11;248(4956):742–745. doi: 10.1126/science.2110383. [DOI] [PubMed] [Google Scholar]
  23. Cassio D., Hamon-Benais C., Guérin M., Lecoq O. Hybrid cell lines constitute a potential reservoir of polarized cells: isolation and study of highly differentiated hepatoma-derived hybrid cells able to form functional bile canaliculi in vitro. J Cell Biol. 1991 Dec;115(5):1397–1408. doi: 10.1083/jcb.115.5.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Casu A., Camogliano L. Glycerophospholipids and cholesterol composition of bile in bile-fistula rats treated with monensin. Biochim Biophys Acta. 1990 Mar 12;1043(1):113–115. doi: 10.1016/0005-2760(90)90117-g. [DOI] [PubMed] [Google Scholar]
  25. Chang W. J., Rothberg K. G., Kamen B. A., Anderson R. G. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol. 1992 Jul;118(1):63–69. doi: 10.1083/jcb.118.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Chen C. S., Rosenwald A. G., Pagano R. E. Ceramide as a modulator of endocytosis. J Biol Chem. 1995 Jun 2;270(22):13291–13297. doi: 10.1074/jbc.270.22.13291. [DOI] [PubMed] [Google Scholar]
  27. Chiu J. H., Hu C. P., Lui W. Y., Lo S. C., Chang C. M. The formation of bile canaliculi in human hepatoma cell lines. Hepatology. 1990 May;11(5):834–842. doi: 10.1002/hep.1840110519. [DOI] [PubMed] [Google Scholar]
  28. Coleman R., Rahman K. Lipid flow in bile formation. Biochim Biophys Acta. 1992 Apr 23;1125(2):113–133. doi: 10.1016/0005-2760(92)90036-u. [DOI] [PubMed] [Google Scholar]
  29. Corasanti J. G., Smith N. D., Gordon E. R., Boyer J. L. Protein kinase C agonists inhibit bile secretion independently of effects on the microcirculation in the isolated perfused rat liver. Hepatology. 1989 Jul;10(1):8–13. doi: 10.1002/hep.1840100103. [DOI] [PubMed] [Google Scholar]
  30. Cornacchia L., Domdey H., Mössner J., Berr F. Expression of a non-MDR2-coded liver phosphatidylcholine membrane transport protein in Xenopus laevis oocytes. Biochem Biophys Res Commun. 1997 Feb 13;231(2):277–282. doi: 10.1006/bbrc.1997.6081. [DOI] [PubMed] [Google Scholar]
  31. Crawford J. M., Berken C. A., Gollan J. L. Role of the hepatocyte microtubular system in the excretion of bile salts and biliary lipid: implications for intracellular vesicular transport. J Lipid Res. 1988 Feb;29(2):144–156. [PubMed] [Google Scholar]
  32. Crawford J. M., Vinter D. W., Gollan J. L. Taurocholate induces pericanalicular localization of C6-NBD-ceramide in isolated hepatocyte couplets. Am J Physiol. 1991 Jan;260(1 Pt 1):G119–G132. doi: 10.1152/ajpgi.1991.260.1.G119. [DOI] [PubMed] [Google Scholar]
  33. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  34. De Matteis M. A., Santini G., Kahn R. A., Di Tullio G., Luini A. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature. 1993 Aug 26;364(6440):818–821. doi: 10.1038/364818a0. [DOI] [PubMed] [Google Scholar]
  35. Decaens C., Rodriguez P., Bouchaud C., Cassio D. Establishment of hepatic cell polarity in the rat hepatoma-human fibroblast hybrid WIF-B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one. J Cell Sci. 1996 Jun;109(Pt 6):1623–1635. doi: 10.1242/jcs.109.6.1623. [DOI] [PubMed] [Google Scholar]
  36. Eichholtz T., Vossebeld P., van Overveld M., Ploegh H. Activation of protein kinase C accelerates internalization of transferrin receptor but not of major histocompatibility complex class I, independent of their phosphorylation status. J Biol Chem. 1992 Nov 5;267(31):22490–22495. [PubMed] [Google Scholar]
  37. Eker P., Holm P. K., van Deurs B., Sandvig K. Selective regulation of apical endocytosis in polarized Madin-Darby canine kidney cells by mastoparan and cAMP. J Biol Chem. 1994 Jul 15;269(28):18607–18615. [PubMed] [Google Scholar]
  38. Elferink R. P., Tytgat G. N., Groen A. K. Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J. 1997 Jan;11(1):19–28. doi: 10.1096/fasebj.11.1.9034162. [DOI] [PubMed] [Google Scholar]
  39. Fiedler K., Parton R. G., Kellner R., Etzold T., Simons K. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 1994 Apr 1;13(7):1729–1740. doi: 10.1002/j.1460-2075.1994.tb06437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Fiedler K., Simons K. The role of N-glycans in the secretory pathway. Cell. 1995 May 5;81(3):309–312. doi: 10.1016/0092-8674(95)90380-1. [DOI] [PubMed] [Google Scholar]
  41. Fielding P. E., Fielding C. J. Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin-coated pits and terminates at cell surface caveolae. Biochemistry. 1996 Nov 26;35(47):14932–14938. doi: 10.1021/bi9613382. [DOI] [PubMed] [Google Scholar]
  42. Fielding P. E., Fielding C. J. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry. 1995 Nov 7;34(44):14288–14292. doi: 10.1021/bi00044a004. [DOI] [PubMed] [Google Scholar]
  43. Fra A. M., Masserini M., Palestini P., Sonnino S., Simons K. A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett. 1995 Nov 13;375(1-2):11–14. doi: 10.1016/0014-5793(95)95228-o. [DOI] [PubMed] [Google Scholar]
  44. Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
  46. Gautam A., Ng O. C., Boyer J. L. Isolated rat hepatocyte couplets in short-term culture: structural characteristics and plasma membrane reorganization. Hepatology. 1987 Mar-Apr;7(2):216–223. doi: 10.1002/hep.1840070203. [DOI] [PubMed] [Google Scholar]
  47. Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
  48. Gregory D. H., Vlahcevic Z. R., Prugh M. F., Swell L. Mechanism of secretion of biliary lipids: role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology. 1978 Jan;74(1):93–100. [PubMed] [Google Scholar]
  49. Groen A. K., Van Wijland M. J., Frederiks W. M., Smit J. J., Schinkel A. H., Oude Elferink R. P. Regulation of protein secretion into bile: studies in mice with a disrupted mdr2 p-glycoprotein gene. Gastroenterology. 1995 Dec;109(6):1997–2006. doi: 10.1016/0016-5085(95)90768-8. [DOI] [PubMed] [Google Scholar]
  50. Hackstadt T., Rockey D. D., Heinzen R. A., Scidmore M. A. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 1996 Mar 1;15(5):964–977. [PMC free article] [PubMed] [Google Scholar]
  51. Hackstadt T., Scidmore M. A., Rockey D. D. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4877–4881. doi: 10.1073/pnas.92.11.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  53. Hanada K., Izawa K., Nishijima M., Akamatsu Y. Sphingolipid deficiency induces hypersensitivity of CD14, a glycosyl phosphatidylinositol-anchored protein, to phosphatidylinositol-specific phospholipase C. J Biol Chem. 1993 Jul 5;268(19):13820–13823. [PubMed] [Google Scholar]
  54. Hannun Y. A., Linardic C. M. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):223–236. doi: 10.1016/0304-4157(93)90001-5. [DOI] [PubMed] [Google Scholar]
  55. Hansen S. H., Casanova J. E. Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A. J Cell Biol. 1994 Aug;126(3):677–687. doi: 10.1083/jcb.126.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hayakawa T., Bruck R., Ng O. C., Boyer J. L. DBcAMP stimulates vesicle transport and HRP excretion in isolated perfused rat liver. Am J Physiol. 1990 Nov;259(5 Pt 1):G727–G735. doi: 10.1152/ajpgi.1990.259.5.G727. [DOI] [PubMed] [Google Scholar]
  57. Hayakawa T., Katagiri K., Hoshino M., Nakai T., Ohiwa T., Kumai T., Miyaji M., Takeuchi T., Corasanti J., Boyer J. L. Papaverine inhibits transcytotic vesicle transport and lipid excretion into bile in isolated perfused rat liver. Hepatology. 1992 Oct;16(4):1036–1042. doi: 10.1002/hep.1840160429. [DOI] [PubMed] [Google Scholar]
  58. Hayakawa T., Ng O. C., Ma A., Boyer J. L., Cheng O. Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology. 1990 Jul;99(1):216–228. doi: 10.1016/0016-5085(90)91251-z. [DOI] [PubMed] [Google Scholar]
  59. Helms J. B., Karrenbauer A., Wirtz K. W., Rothman J. E., Wieland F. T. Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. Secretion of glycosylated tripeptide and truncated sphingomyelin. J Biol Chem. 1990 Nov 15;265(32):20027–20032. [PubMed] [Google Scholar]
  60. Hemery I., Durand-Schneider A. M., Feldmann G., Vaerman J. P., Maurice M. The transcytotic pathway of an apical plasma membrane protein (B10) in hepatocytes is similar to that of IgA and occurs via a tubular pericentriolar compartment. J Cell Sci. 1996 Jun;109(Pt 6):1215–1227. doi: 10.1242/jcs.109.6.1215. [DOI] [PubMed] [Google Scholar]
  61. Hoekstra D., Kok J. W. Trafficking of glycosphingolipids in eukaryotic cells; sorting and recycling of lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):277–294. doi: 10.1016/0304-4157(92)90002-r. [DOI] [PubMed] [Google Scholar]
  62. Ihrke G., Martin G. V., Shanks M. R., Schrader M., Schroer T. A., Hubbard A. L. Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes. J Cell Biol. 1998 Apr 6;141(1):115–133. doi: 10.1083/jcb.141.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Ihrke G., Neufeld E. B., Meads T., Shanks M. R., Cassio D., Laurent M., Schroer T. A., Pagano R. E., Hubbard A. L. WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol. 1993 Dec;123(6 Pt 2):1761–1775. doi: 10.1083/jcb.123.6.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ivessa N. E., De Lemos-Chiarandini C., Gravotta D., Sabatini D. D., Kreibich G. The Brefeldin A-induced retrograde transport from the Golgi apparatus to the endoplasmic reticulum depends on calcium sequestered to intracellular stores. J Biol Chem. 1995 Oct 27;270(43):25960–25967. doi: 10.1074/jbc.270.43.25960. [DOI] [PubMed] [Google Scholar]
  65. Javitt N. B. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. doi: 10.1096/fasebj.4.2.2153592. [DOI] [PubMed] [Google Scholar]
  66. Jones A. L., Schmucker D. L., Mooney J. S., Ockner R. K., Adler R. D. Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity. Lab Invest. 1979 Apr;40(4):512–517. [PubMed] [Google Scholar]
  67. Kaplan M. R., Simoni R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol. 1985 Aug;101(2):441–445. doi: 10.1083/jcb.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kaplan M. R., Simoni R. D. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol. 1985 Aug;101(2):446–453. doi: 10.1083/jcb.101.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Keller P., Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol. 1998 Mar 23;140(6):1357–1367. doi: 10.1083/jcb.140.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kitamura T., Gatmaitan Z., Arias I. M. Serial quantitative image analysis and confocal microscopy of hepatic uptake, intracellular distribution and biliary secretion of a fluorescent bile acid analog in rat hepatocyte doublets. Hepatology. 1990 Dec;12(6):1358–1364. doi: 10.1002/hep.1840120617. [DOI] [PubMed] [Google Scholar]
  71. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  72. Kobayashi T., Pagano R. E. Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem. 1989 Apr 5;264(10):5966–5973. [PubMed] [Google Scholar]
  73. Kobayashi T., Pimplikar S. W., Parton R. G., Bhakdi S., Simons K. Sphingolipid transport from the trans-Golgi network to the apical surface in permeabilized MDCK cells. FEBS Lett. 1992 Apr 6;300(3):227–231. doi: 10.1016/0014-5793(92)80851-7. [DOI] [PubMed] [Google Scholar]
  74. Kok J. W., Babia T., Filipeanu C. M., Nelemans A., Egea G., Hoekstra D. PDMP blocks brefeldin A-induced retrograde membrane transport from golgi to ER: evidence for involvement of calcium homeostasis and dissociation from sphingolipid metabolism. J Cell Biol. 1998 Jul 13;142(1):25–38. doi: 10.1083/jcb.142.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kok J. W., Babia T., Hoekstra D. Sorting of sphingolipids in the endocytic pathway of HT29 cells. J Cell Biol. 1991 Jul;114(2):231–239. doi: 10.1083/jcb.114.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ktistakis N. T., Brown H. A., Waters M. G., Sternweis P. C., Roth M. G. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol. 1996 Jul;134(2):295–306. doi: 10.1083/jcb.134.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kullak-Ublick G. A., Beuers U., Paumgartner G. Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology. 1996 May;23(5):1053–1060. doi: 10.1002/hep.510230518. [DOI] [PubMed] [Google Scholar]
  78. Lange Y., Swaisgood M. H., Ramos B. V., Steck T. L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem. 1989 Mar 5;264(7):3786–3793. [PubMed] [Google Scholar]
  79. Le Bivic A., Quaroni A., Nichols B., Rodriguez-Boulan E. Biogenetic pathways of plasma membrane proteins in Caco-2, a human intestinal epithelial cell line. J Cell Biol. 1990 Oct;111(4):1351–1361. doi: 10.1083/jcb.111.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lipardi C., Mora R., Colomer V., Paladino S., Nitsch L., Rodriguez-Boulan E., Zurzolo C. Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J Cell Biol. 1998 Feb 9;140(3):617–626. doi: 10.1083/jcb.140.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Liscovitch M., Cantley L. C. Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell. 1995 Jun 2;81(5):659–662. doi: 10.1016/0092-8674(95)90525-1. [DOI] [PubMed] [Google Scholar]
  83. Maceyka M., Machamer C. E. Ceramide accumulation uncovers a cycling pathway for the cis-Golgi network marker, infectious bronchitis virus M protein. J Cell Biol. 1997 Dec 15;139(6):1411–1418. doi: 10.1083/jcb.139.6.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Martin O. C., Pagano R. E. Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms. J Cell Biol. 1994 May;125(4):769–781. doi: 10.1083/jcb.125.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Matsuoka K., Orci L., Amherdt M., Bednarek S. Y., Hamamoto S., Schekman R., Yeung T. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell. 1998 Apr 17;93(2):263–275. doi: 10.1016/s0092-8674(00)81577-9. [DOI] [PubMed] [Google Scholar]
  86. Matter K., Brauchbar M., Bucher K., Hauri H. P. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell. 1990 Feb 9;60(3):429–437. doi: 10.1016/0092-8674(90)90594-5. [DOI] [PubMed] [Google Scholar]
  87. Matter K., Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol. 1994 Aug;6(4):545–554. doi: 10.1016/0955-0674(94)90075-2. [DOI] [PubMed] [Google Scholar]
  88. Maurice M., Schell M. J., Lardeux B., Hubbard A. L. Biosynthesis and intracellular transport of a bile canalicular plasma membrane protein: studies in vivo and in the perfused rat liver. Hepatology. 1994 Mar;19(3):648–655. doi: 10.1002/hep.1840190316. [DOI] [PubMed] [Google Scholar]
  89. Mays R. W., Beck K. A., Nelson W. J. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr Opin Cell Biol. 1994 Feb;6(1):16–24. doi: 10.1016/0955-0674(94)90111-2. [DOI] [PubMed] [Google Scholar]
  90. Mays R. W., Siemers K. A., Fritz B. A., Lowe A. W., van Meer G., Nelson W. J. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J Cell Biol. 1995 Sep;130(5):1105–1115. doi: 10.1083/jcb.130.5.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mellman I. Molecular sorting of membrane proteins in polarized and nonpolarized cells. Cold Spring Harb Symp Quant Biol. 1995;60:745–752. doi: 10.1101/sqb.1995.060.01.080. [DOI] [PubMed] [Google Scholar]
  92. Moreau P., Sturbois B., Morré D. J., Cassagne C. Effect of low temperatures on the transfer of phospholipids with various acyl-chain lengths to the plasma membrane of leek cells. Biochim Biophys Acta. 1994 Sep 14;1194(2):239–246. doi: 10.1016/0005-2736(94)90305-0. [DOI] [PubMed] [Google Scholar]
  93. Mostov K. E., Cardone M. H. Regulation of protein traffic in polarized epithelial cells. Bioessays. 1995 Feb;17(2):129–138. doi: 10.1002/bies.950170208. [DOI] [PubMed] [Google Scholar]
  94. Musat A. I., Sattler C. A., Sattler G. L., Pitot H. C. Reestablishment of cell polarity of rat hepatocytes in primary culture. Hepatology. 1993 Jul;18(1):198–205. [PubMed] [Google Scholar]
  95. Muñiz M., Alonso M., Hidalgo J., Velasco A. A regulatory role for cAMP-dependent protein kinase in protein traffic along the exocytic route. J Biol Chem. 1996 Nov 29;271(48):30935–30941. doi: 10.1074/jbc.271.48.30935. [DOI] [PubMed] [Google Scholar]
  96. Muñiz M., Martín M. E., Hidalgo J., Velasco A. Protein kinase A activity is required for the budding of constitutive transport vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14461–14466. doi: 10.1073/pnas.94.26.14461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Müsch A., Xu H., Shields D., Rodriguez-Boulan E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J Cell Biol. 1996 May;133(3):543–558. doi: 10.1083/jcb.133.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Nemchausky B. A., Layden T. J., Boyer J. L. Effects of chronic choleretic infusions of bile acids on the membrane of the bile canaliculus. A biochemical and morphologic study. Lab Invest. 1977 Mar;36(3):259–267. [PubMed] [Google Scholar]
  99. Oshio C., Phillips M. J. Contractility of bile canaliculi: implications for liver function. Science. 1981 May 29;212(4498):1041–1042. doi: 10.1126/science.7015506. [DOI] [PubMed] [Google Scholar]
  100. Oude Elferink R. P., Ottenhoff R., van Wijland M., Frijters C. M., van Nieuwkerk C., Groen A. K. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res. 1996 May;37(5):1065–1075. [PubMed] [Google Scholar]
  101. Oude Elferink R. P., Ottenhoff R., van Wijland M., Smit J. J., Schinkel A. H., Groen A. K. Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest. 1995 Jan;95(1):31–38. doi: 10.1172/JCI117658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Pagano R. E., Sleight R. G. Defining lipid transport pathways in animal cells. Science. 1985 Sep 13;229(4718):1051–1057. doi: 10.1126/science.4035344. [DOI] [PubMed] [Google Scholar]
  103. Parton R. G. Caveolae and caveolins. Curr Opin Cell Biol. 1996 Aug;8(4):542–548. doi: 10.1016/s0955-0674(96)80033-0. [DOI] [PubMed] [Google Scholar]
  104. Pimplikar S. W., Simons K. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin-Darby canine kidney cells. J Biol Chem. 1994 Jul 22;269(29):19054–19059. [PubMed] [Google Scholar]
  105. Remy L., Chalvet C., Ripert J. P., Gerolami A. Intracellular lumina and bile canaliculi in rat hepatocytes in vitro--a cytochemical study. Acta Histochem. 1989;85(1):87–92. doi: 10.1016/S0065-1281(89)80103-5. [DOI] [PubMed] [Google Scholar]
  106. Reynier M. O., Abou Hashieh I., Crotte C., Carbuccia N., Richard B., Gérolami A. Monensin action on the Golgi complex in perfused rat liver: evidence against bile salt vesicular transport. Gastroenterology. 1992 Jun;102(6):2024–2032. doi: 10.1016/0016-5085(92)90328-v. [DOI] [PubMed] [Google Scholar]
  107. Riezman H., Woodman P. G., van Meer G., Marsh M. Molecular mechanisms of endocytosis. Cell. 1997 Dec 12;91(6):731–738. doi: 10.1016/s0092-8674(00)80461-4. [DOI] [PubMed] [Google Scholar]
  108. Rodriguez-Boulan E., Powell S. K. Polarity of epithelial and neuronal cells. Annu Rev Cell Biol. 1992;8:395–427. doi: 10.1146/annurev.cb.08.110192.002143. [DOI] [PubMed] [Google Scholar]
  109. Roelofsen H., Vos T. A., Schippers I. J., Kuipers F., Koning H., Moshage H., Jansen P. L., Müller M. Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells. Gastroenterology. 1997 Feb;112(2):511–521. doi: 10.1053/gast.1997.v112.pm9024305. [DOI] [PubMed] [Google Scholar]
  110. Rosario J., Sutherland E., Zaccaro L., Simon F. R. Ethinylestradiol administration selectively alters liver sinusoidal membrane lipid fluidity and protein composition. Biochemistry. 1988 May 31;27(11):3939–3946. doi: 10.1021/bi00411a008. [DOI] [PubMed] [Google Scholar]
  111. Rosenwald A. G., Machamer C. E., Pagano R. E. Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway. Biochemistry. 1992 Apr 14;31(14):3581–3590. doi: 10.1021/bi00129a005. [DOI] [PubMed] [Google Scholar]
  112. Rosenwald A. G., Pagano R. E. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J Biol Chem. 1993 Mar 5;268(7):4577–4579. [PubMed] [Google Scholar]
  113. Roth M. G., Sternweis P. C. The role of lipid signaling in constitutive membrane traffic. Curr Opin Cell Biol. 1997 Aug;9(4):519–526. doi: 10.1016/s0955-0674(97)80028-2. [DOI] [PubMed] [Google Scholar]
  114. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  115. Rothberg K. G., Ying Y. S., Kamen B. A., Anderson R. G. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol. 1990 Dec;111(6 Pt 2):2931–2938. doi: 10.1083/jcb.111.6.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  117. Sabatini D. D., Adesnik M., Ivanov I. E., Simon J. P. Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission. Biocell. 1996 Dec;20(3):287–300. [PubMed] [Google Scholar]
  118. Sakisaka S., Ng O. C., Boyer J. L. Tubulovesicular transcytotic pathway in isolated rat hepatocyte couplets in culture. Effect of colchicine and taurocholate. Gastroenterology. 1988 Sep;95(3):793–804. doi: 10.1016/s0016-5085(88)80030-1. [DOI] [PubMed] [Google Scholar]
  119. Sarafian T., Pradel L. A., Henry J. P., Aunis D., Bader M. F. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J Cell Biol. 1991 Sep;114(6):1135–1147. doi: 10.1083/jcb.114.6.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Sasaki T. Glycolipid transfer protein and intracellular traffic of glucosylceramide. Experientia. 1990 Jun 15;46(6):611–616. doi: 10.1007/BF01939700. [DOI] [PubMed] [Google Scholar]
  121. Schaeren-Wiemers N., van der Bijl P., Schwab M. E. The UDP-galactose:ceramide galactosyltransferase: expression pattern in oligodendrocytes and Schwann cells during myelination and substrate preference for hydroxyceramide. J Neurochem. 1995 Nov;65(5):2267–2278. doi: 10.1046/j.1471-4159.1995.65052267.x. [DOI] [PubMed] [Google Scholar]
  122. Scheiffele P., Peränen J., Simons K. N-glycans as apical sorting signals in epithelial cells. Nature. 1995 Nov 2;378(6552):96–98. doi: 10.1038/378096a0. [DOI] [PubMed] [Google Scholar]
  123. Schell M. J., Maurice M., Stieger B., Hubbard A. L. 5'nucleotidase is sorted to the apical domain of hepatocytes via an indirect route. J Cell Biol. 1992 Dec;119(5):1173–1182. doi: 10.1083/jcb.119.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Scidmore M. A., Fischer E. R., Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol. 1996 Jul;134(2):363–374. doi: 10.1083/jcb.134.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Shanks M. R., Cassio D., Lecoq O., Hubbard A. L. An improved polarized rat hepatoma hybrid cell line. Generation and comparison with its hepatoma relatives and hepatocytes in vivo. J Cell Sci. 1994 Apr;107(Pt 4):813–825. doi: 10.1242/jcs.107.4.813. [DOI] [PubMed] [Google Scholar]
  127. Shiao Y. J., Vance J. E. Sphingomyelin transport to the cell surface occurs independently of protein secretion in rat hepatocytes. J Biol Chem. 1993 Dec 15;268(35):26085–26092. [PubMed] [Google Scholar]
  128. Simon J. P., Ivanov I. E., Adesnik M., Sabatini D. D. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J Cell Biol. 1996 Oct;135(2):355–370. doi: 10.1083/jcb.135.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  130. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  131. Sleight R. G., Pagano R. E. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem. 1983 Aug 10;258(15):9050–9058. [PubMed] [Google Scholar]
  132. Smart E. J., Ying Y. s., Donzell W. C., Anderson R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem. 1996 Nov 15;271(46):29427–29435. doi: 10.1074/jbc.271.46.29427. [DOI] [PubMed] [Google Scholar]
  133. Smit J. J., Schinkel A. H., Mol C. A., Majoor D., Mooi W. J., Jongsma A. P., Lincke C. R., Borst P. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest. 1994 Nov;71(5):638–649. [PubMed] [Google Scholar]
  134. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  135. Sormunen R., Eskelinen S., Lehto V. P. Bile canaliculus formation in cultured HEPG2 cells. Lab Invest. 1993 Jun;68(6):652–662. [PubMed] [Google Scholar]
  136. Talamini M. A., Kappus B., Hubbard A. Repolarization of hepatocytes in culture. Hepatology. 1997 Jan;25(1):167–172. doi: 10.1002/hep.510250131. [DOI] [PubMed] [Google Scholar]
  137. Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
  138. Trinchera M., Fabbri M., Ghidoni R. Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem. 1991 Nov 5;266(31):20907–20912. [PubMed] [Google Scholar]
  139. Tsukada N., Ackerley C. A., Phillips M. J. The structure and organization of the bile canalicular cytoskeleton with special reference to actin and actin-binding proteins. Hepatology. 1995 Apr;21(4):1106–1113. [PubMed] [Google Scholar]
  140. Urbani L., Simoni R. D. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J Biol Chem. 1990 Feb 5;265(4):1919–1923. [PubMed] [Google Scholar]
  141. Vance J. E., Aasman E. J., Szarka R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J Biol Chem. 1991 May 5;266(13):8241–8247. [PubMed] [Google Scholar]
  142. Verkade H. J., Vonk R. J., Kuipers F. New insights into the mechanism of bile acid-induced biliary lipid secretion. Hepatology. 1995 Apr;21(4):1174–1189. [PubMed] [Google Scholar]
  143. Verkade H. J., Zaal K. J., Derksen J. T., Vonk R. J., Hoekstra D., Kuipers F., Scherphof G. L. Processing of the phospholipid analogue phosphatidyl(N-sulphorhodamine B sulphonyl)ethanolamine by rat hepatocytes in vitro and in vivo. Biochem J. 1992 May 15;284(Pt 1):259–265. doi: 10.1042/bj2840259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Vidal M., Mangeat P., Hoekstra D. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci. 1997 Aug;110(Pt 16):1867–1877. doi: 10.1242/jcs.110.16.1867. [DOI] [PubMed] [Google Scholar]
  145. Warnock D. E., Lutz M. S., Blackburn W. A., Young W. W., Jr, Baenziger J. U. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2708–2712. doi: 10.1073/pnas.91.7.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Warren G., Levine T., Misteli T. Mitotic disassembly of the mammalian Golgi apparatus. Trends Cell Biol. 1995 Nov;5(11):413–416. doi: 10.1016/s0962-8924(00)89094-7. [DOI] [PubMed] [Google Scholar]
  147. Wattenberg B. W. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system. J Cell Biol. 1990 Aug;111(2):421–428. doi: 10.1083/jcb.111.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Weimbs T., Low S. H., Chapin S. J., Mostov K. E. Apical targeting in polarized epithelial cells: There's more afloat than rafts. Trends Cell Biol. 1997 Oct;7(10):393–399. doi: 10.1016/S0962-8924(97)01130-6. [DOI] [PubMed] [Google Scholar]
  149. Westermann P., Knoblich M., Maier O., Lindschau C., Haller H. Protein kinase C bound to the Golgi apparatus supports the formation of constitutive transport vesicles. Biochem J. 1996 Dec 1;320(Pt 2):651–658. doi: 10.1042/bj3200651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Wilton J. C., Matthews G. M., Burgoyne R. D., Mills C. O., Chipman J. K., Coleman R. Fluorescent choleretic and cholestatic bile salts take different paths across the hepatocyte: transcytosis of glycolithocholate leads to an extensive redistribution of annexin II. J Cell Biol. 1994 Oct;127(2):401–410. doi: 10.1083/jcb.127.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Wilton J. C., Matthews G. M. Polarised membrane traffic in hepatocytes. Bioessays. 1996 Mar;18(3):229–236. doi: 10.1002/bies.950180310. [DOI] [PubMed] [Google Scholar]
  152. Wirtz K. W. Phospholipid transfer proteins revisited. Biochem J. 1997 Jun 1;324(Pt 2):353–360. doi: 10.1042/bj3240353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Wirtz K. W. Phospholipid transfer proteins. Annu Rev Biochem. 1991;60:73–99. doi: 10.1146/annurev.bi.60.070191.000445. [DOI] [PubMed] [Google Scholar]
  154. Yoshimori T., Keller P., Roth M. G., Simons K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J Cell Biol. 1996 Apr;133(2):247–256. doi: 10.1083/jcb.133.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Young W. W., Jr, Lutz M. S., Blackburn W. A. Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J Biol Chem. 1992 Jun 15;267(17):12011–12015. [PubMed] [Google Scholar]
  156. Zaal K. J., Kok J. W., Sormunen R., Eskelinen S., Hoekstra D. Intracellular sites involved in the biogenesis of bile canaliculi in hepatic cells. Eur J Cell Biol. 1994 Feb;63(1):10–19. [PubMed] [Google Scholar]
  157. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Zegers M. M., Hoekstra D. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells. J Cell Biol. 1997 Jul 28;138(2):307–321. doi: 10.1083/jcb.138.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Zegers M. M., Kok J. W., Hoekstra D. Use of photoactivatable sphingolipid analogues to monitor lipid transport in mammalian cells. Biochem J. 1997 Dec 1;328(Pt 2):489–498. doi: 10.1042/bj3280489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Zegers M. M., Zaal K. J., Hoekstra D. Functional involvement of proteins, interacting with sphingolipids, in sphingolipid transport to the canalicular membrane in the human hepatocytic cell line, HepG2? Hepatology. 1998 Apr;27(4):1089–1097. doi: 10.1002/hep.510270426. [DOI] [PubMed] [Google Scholar]
  161. Zegers M. M., Zaal K. J., van IJzendoorn S. C., Klappe K., Hoekstra D. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells. Mol Biol Cell. 1998 Jul;9(7):1939–1949. doi: 10.1091/mbc.9.7.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Zhou Q., Sims P. J., Wiedmer T. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids. Biochemistry. 1998 Feb 24;37(8):2356–2360. doi: 10.1021/bi972625o. [DOI] [PubMed] [Google Scholar]
  163. Zhou Q., Zhao J., Stout J. G., Luhm R. A., Wiedmer T., Sims P. J. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J Biol Chem. 1997 Jul 18;272(29):18240–18244. doi: 10.1074/jbc.272.29.18240. [DOI] [PubMed] [Google Scholar]
  164. Zurzolo C., Le Bivic A., Quaroni A., Nitsch L., Rodriguez-Boulan E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 1992 Jun;11(6):2337–2344. doi: 10.1002/j.1460-2075.1992.tb05293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Zwaal R. F., Schroit A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997 Feb 15;89(4):1121–1132. [PubMed] [Google Scholar]
  166. van 't Hof W., van Meer G. Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J Cell Biol. 1990 Sep;111(3):977–986. doi: 10.1083/jcb.111.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. van Genderen I., van Meer G. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells. J Cell Biol. 1995 Nov;131(3):645–654. doi: 10.1083/jcb.131.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. van Helvoort A., Giudici M. L., Thielemans M., van Meer G. Transport of sphingomyelin to the cell surface is inhibited by brefeldin A and in mitosis, where C6-NBD-sphingomyelin is translocated across the plasma membrane by a multidrug transporter activity. J Cell Sci. 1997 Jan;110(Pt 1):75–83. doi: 10.1242/jcs.110.1.75. [DOI] [PubMed] [Google Scholar]
  169. van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]
  170. van IJzendoorn S. C., Hoekstra D. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids. J Cell Biol. 1998 Aug 10;142(3):683–696. doi: 10.1083/jcb.142.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. van IJzendoorn S. C., Zegers M. M., Kok J. W., Hoekstra D. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells. J Cell Biol. 1997 Apr 21;137(2):347–357. doi: 10.1083/jcb.137.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. van Meer G., Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 1986 Jul;5(7):1455–1464. doi: 10.1002/j.1460-2075.1986.tb04382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. van Meer G., van 't Hof W. Epithelial sphingolipid sorting is insensitive to reorganization of the Golgi by nocodazole, but is abolished by monensin in MDCK cells and by brefeldin A in Caco-2 cells. J Cell Sci. 1993 Mar;104(Pt 3):833–842. doi: 10.1242/jcs.104.3.833. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES