Abstract
Previous work has demonstrated that human skeletal muscle and adipose tissue both express the GLUT5 fructose transporter, but to date the issue of whether this protein is also expressed in skeletal muscle and adipose tissue of rodents has remained unresolved. In the present study we have used a combination of biochemical and molecular approaches to ascertain whether rat skeletal muscle expresses GLUT5 protein and, if so, whether it possesses the capacity to transport fructose. An isoform-specific antibody against rat GLUT5 reacted positively with crude membranes prepared from rat skeletal muscle. A single immunoreactive band of approx. 50 kDa was visualized on immunoblots which was lost when using anti-(rat GLUT5) serum that had been pre-adsorbed with the antigenic peptide. Subcellular fractionation of skeletal muscle localized this immunoreactivity to a single membrane fraction that was enriched with sarcolemma. Plasma membranes, but not low-density microsomes, from rat adipose tissue also displayed a single protein band of equivalent molecular mass to that seen in muscle. Reverse transcription-PCR analyses, using rat-specific GLUT5 primers, of muscle and jejunal RNA revealed a single PCR fragment of the expected size in jejunum and in four different skeletal muscle types. Sarcolemmal vesicles from rat muscle displayed fructose and glucose uptake. Vesicular uptake of glucose was inhibited by nearly 90% in the presence of cytochalasin B, whereas that of fructose was unaffected. To determine whether fructose could regulate GLUT5 expression in skeletal muscle, rats were maintained on a fructose-enriched diet for 4 days. This procedure increased jejunal and renal GLUT5 protein expression by approx. 4- and 2-fold respectively, but had no detectable effects on the abundance of GLUT5 protein in skeletal muscle or on fructose uptake in rat adipocytes. The present results show that GLUT5 is expressed in the sarcolemma of rat skeletal muscle and that it is likely to mediate fructose uptake in this tissue. Furthermore, unlike the situation in absorptive and re-absorptive epithelia, GLUT5 expression in insulin-sensitive tissues is not regulated by increased substrate supply.
Full Text
The Full Text of this article is available as a PDF (157.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aledo J. C., Lavoie L., Volchuk A., Keller S. R., Klip A., Hundal H. S. Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochem J. 1997 Aug 1;325(Pt 3):727–732. doi: 10.1042/bj3250727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergström J., Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand. 1967 Jul;182(1):93–107. doi: 10.1111/j.0954-6820.1967.tb11503.x. [DOI] [PubMed] [Google Scholar]
- Björkman O., Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans. Diabetes. 1982 Jun;31(6 Pt 1):516–520. doi: 10.2337/diab.31.6.516. [DOI] [PubMed] [Google Scholar]
- Blakemore S. J., Aledo J. C., James J., Campbell F. C., Lucocq J. M., Hundal H. S. The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochem J. 1995 Jul 1;309(Pt 1):7–12. doi: 10.1042/bj3090007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Burant C. F., Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994 Jul;267(1 Pt 1):G71–G79. doi: 10.1152/ajpgi.1994.267.1.G71. [DOI] [PubMed] [Google Scholar]
- Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
- Csáky T. Z., Fischer E. Effects of ketohexosemia on the ketohexose transport in the small intestine of rats. Biochim Biophys Acta. 1984 May 30;772(3):259–263. doi: 10.1016/0005-2736(84)90142-1. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douen A. G., Burdett E., Ramlal T., Rastogi S., Vranic M., Klip A. Characterization of glucose transporter-enriched membranes from rat skeletal muscle: assessment of endothelial cell contamination and presence of sarcoplasmic reticulum and transverse tubules. Endocrinology. 1991 Jan;128(1):611–616. doi: 10.1210/endo-128-1-611. [DOI] [PubMed] [Google Scholar]
- Douen A. G., Ramlal T., Klip A., Young D. A., Cartee G. D., Holloszy J. O. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology. 1989 Jan;124(1):449–454. doi: 10.1210/endo-124-1-449. [DOI] [PubMed] [Google Scholar]
- FROESCH E. R., GINSBERG J. L. Fructose metabolism of adipose tissue. I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem. 1962 Nov;237:3317–3324. [PubMed] [Google Scholar]
- Felsenfeld D. P., Sweadner K. J. Fine specificity mapping and topography of an isozyme-specific epitope of the Na,K-ATPase catalytic subunit. J Biol Chem. 1988 Aug 5;263(22):10932–10942. [PubMed] [Google Scholar]
- Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajduch E., Aledo J. C., Watts C., Hundal H. S. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes. Biochem J. 1997 Jan 1;321(Pt 1):233–238. doi: 10.1042/bj3210233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajduch E., Darakhshan F., Hundal H. S. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia. 1998 Jul;41(7):821–828. doi: 10.1007/s001250050993. [DOI] [PubMed] [Google Scholar]
- Halperin M. L., Cheema-Dhadli S. Comparison of glucose and fructose transport into adipocytes of the rat. Biochem J. 1982 Mar 15;202(3):717–721. doi: 10.1042/bj2020717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Wojtaszewski J. F., Goodyear L. J. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997 Dec;273(6 Pt 1):E1039–E1051. doi: 10.1152/ajpendo.1997.273.6.E1039. [DOI] [PubMed] [Google Scholar]
- Hundal H. S., Marette A., Mitsumoto Y., Ramlal T., Blostein R., Klip A. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem. 1992 Mar 15;267(8):5040–5043. [PubMed] [Google Scholar]
- Inukai K., Asano T., Katagiri H., Ishihara H., Anai M., Fukushima Y., Tsukuda K., Kikuchi M., Yazaki Y., Oka Y. Cloning and increased expression with fructose feeding of rat jejunal GLUT5. Endocrinology. 1993 Nov;133(5):2009–2014. doi: 10.1210/endo.133.5.8404647. [DOI] [PubMed] [Google Scholar]
- Klip A., Ramlal T., Young D. A., Holloszy J. O. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 1987 Nov 16;224(1):224–230. doi: 10.1016/0014-5793(87)80452-0. [DOI] [PubMed] [Google Scholar]
- Kristiansen S., Darakhshan F., Richter E. A., Hundal H. S. Fructose transport and GLUT-5 protein in human sarcolemmal vesicles. Am J Physiol. 1997 Sep;273(3 Pt 1):E543–E548. doi: 10.1152/ajpendo.1997.273.3.E543. [DOI] [PubMed] [Google Scholar]
- Kristiansen S., Hargreaves M., Richter E. A. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol. 1996 Jan;270(1 Pt 1):E197–E201. doi: 10.1152/ajpendo.1996.270.1.E197. [DOI] [PubMed] [Google Scholar]
- Kristiansen S., Hargreaves M., Richter E. A. Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am J Physiol. 1997 Mar;272(3 Pt 1):E385–E389. doi: 10.1152/ajpendo.1997.272.3.E385. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marette A., Burdett E., Douen A., Vranic M., Klip A. Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes. 1992 Dec;41(12):1562–1569. doi: 10.2337/diab.41.12.1562. [DOI] [PubMed] [Google Scholar]
- Marette A., Richardson J. M., Ramlal T., Balon T. W., Vranic M., Pessin J. E., Klip A. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol. 1992 Aug;263(2 Pt 1):C443–C452. doi: 10.1152/ajpcell.1992.263.2.C443. [DOI] [PubMed] [Google Scholar]
- Miyamoto K., Tatsumi S., Morimoto A., Minami H., Yamamoto H., Sone K., Taketani Y., Nakabou Y., Oka T., Takeda E. Characterization of the rabbit intestinal fructose transporter (GLUT5). Biochem J. 1994 Nov 1;303(Pt 3):877–883. doi: 10.1042/bj3030877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilegaard H., Juel C., Wibrand F. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am J Physiol. 1993 Feb;264(2 Pt 1):E156–E160. doi: 10.1152/ajpendo.1993.264.2.E156. [DOI] [PubMed] [Google Scholar]
- Ploug T., Wojtaszewski J., Kristiansen S., Hespel P., Galbo H., Richter E. A. Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. Am J Physiol. 1993 Feb;264(2 Pt 1):E270–E278. doi: 10.1152/ajpendo.1993.264.2.E270. [DOI] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Rand E. B., Depaoli A. M., Davidson N. O., Bell G. I., Burant C. F. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol. 1993 Jun;264(6 Pt 1):G1169–G1176. doi: 10.1152/ajpgi.1993.264.6.G1169. [DOI] [PubMed] [Google Scholar]
- Schoenle E., Zapf J., Froesch E. R. Transport and metabolism of fructose in fat cells of normal and hypophysectomized rats. Am J Physiol. 1979 Oct;237(4):E325–E330. doi: 10.1152/ajpendo.1979.237.4.E325. [DOI] [PubMed] [Google Scholar]
- Schultz S. G., Strecker C. K. Fructose influx across the brush border of rabbit ileum. Biochim Biophys Acta. 1970 Sep 15;211(3):586–588. doi: 10.1016/0005-2736(70)90266-x. [DOI] [PubMed] [Google Scholar]
- Shepherd P. R., Gibbs E. M., Wesslau C., Gould G. W., Kahn B. B. Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes. 1992 Oct;41(10):1360–1365. doi: 10.2337/diab.41.10.1360. [DOI] [PubMed] [Google Scholar]
- Stephens J. M., Pilch P. F. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev. 1995 Aug;16(4):529–546. doi: 10.1210/edrv-16-4-529. [DOI] [PubMed] [Google Scholar]
- Topping D. L., Mayes P. A. The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose. Nutr Metab. 1971;13(6):331–338. doi: 10.1159/000175352. [DOI] [PubMed] [Google Scholar]
- Zierath J. R., Nolte L. A., Wahlström E., Galuska D., Shepherd P. R., Kahn B. B., Wallberg-Henriksson H. Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle. Biochem J. 1995 Oct 15;311(Pt 2):517–521. doi: 10.1042/bj3110517. [DOI] [PMC free article] [PubMed] [Google Scholar]