Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):395–404. doi: 10.1042/bj3360395

Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation.

C Capeillère-Blandin 1
PMCID: PMC1219884  PMID: 9820817

Abstract

The present study was first aimed at a complete steady-state kinetic analysis of the reaction between guaiacol (2-methoxyphenol) and the myeloperoxidase (MPO)/H2O2 system, including a description of the isolation and purification of MPO from human polymorphonuclear neutrophil cells. Secondly, the overall reaction of the oxidation of NADPH, mediated by the reactive intermediates formed from the oxidation of guaiacol in the MPO/H2O2 system, was analysed kinetically. The presence of guaiacol stimulates the oxidation of NADPH by the MPO/H2O2 system in a concentration-dependent manner. Concomitantly, the accumulation of biphenoquinone (BQ), the final steady-state product of guaiacol oxidation, is lowered, and even inhibited completely, at high concentrations of NADPH. Under these conditions, the stoichiometry of NADPH:H2O2 is 1, and the oxidation rate of NADPH approximates to that of the rate of guaiacol oxidation by MPO. The effects of the presence of superoxide dismutase, catalase and of anaerobic conditions on the overall oxidation of NADPH have also been examined, and the data indicated that superoxide formation did not occur. The final product of NADPH oxidation was shown to be enzymically active NADP+, while guaiacol was generated continuously from the reaction between NADPH and oxidized guaiacol product. In contrast, similar experiments performed on the indirect, tyrosine-mediated oxidation of NADPH by MPO showed that a propagation of the free radical chain was occurring, with generation of both O2(-.) and H2O2. BQ, in itself, was able to spontaneously oxidize NADPH, but neither the rate nor the stoichiometry of the reaction could account for the NADPH-oxidation process involved in the steady-state peroxidation cycle. These results provide evidence that the oxidation of NADPH does not involve a free nucleotide radical intermediate, but that this is probably due to a direct electron-transfer reaction between NADPH and a two-electron-oxidized guaiacol intermediate.

Full Text

The Full Text of this article is available as a PDF (201.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ator M. A., Ortiz de Montellano P. R. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. J Biol Chem. 1987 Feb 5;262(4):1542–1551. [PubMed] [Google Scholar]
  2. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  3. Bakkenist A. R., Wever R., Vulsma T., Plat H., van Gelder B. F. Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta. 1978 May 11;524(1):45–54. doi: 10.1016/0005-2744(78)90101-8. [DOI] [PubMed] [Google Scholar]
  4. Bolscher B. G., Wever R. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate. Biochim Biophys Acta. 1984 Jul 17;788(1):1–10. doi: 10.1016/0167-4838(84)90290-5. [DOI] [PubMed] [Google Scholar]
  5. Capeillere-Blandin C., Masson A., Descamps-Latscha B. Molecular characteristics of cytochrome b558 isolated from human granulocytes, monocytes and HL60 and U937 cells differentiated into monocyte/macrophages. Biochim Biophys Acta. 1991 Aug 13;1094(1):55–65. doi: 10.1016/0167-4889(91)90026-t. [DOI] [PubMed] [Google Scholar]
  6. Casella L., Poli S., Gullotti M., Selvaggini C., Beringhelli T., Marchesini A. The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes. Biochemistry. 1994 May 31;33(21):6377–6386. doi: 10.1021/bi00187a001. [DOI] [PubMed] [Google Scholar]
  7. Davey C. A., Fenna R. E. 2.3 A resolution X-ray crystal structure of the bisubstrate analogue inhibitor salicylhydroxamic acid bound to human myeloperoxidase: a model for a prereaction complex with hydrogen peroxide. Biochemistry. 1996 Aug 20;35(33):10967–10973. doi: 10.1021/bi960577m. [DOI] [PubMed] [Google Scholar]
  8. Doerge D. R., Divi R. L., Churchwell M. I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal Biochem. 1997 Jul 15;250(1):10–17. doi: 10.1006/abio.1997.2191. [DOI] [PubMed] [Google Scholar]
  9. Edwards S. W., Swan T. F. Regulation of superoxide generation by myeloperoxidase during the respiratory burst of human neutrophils. Biochem J. 1986 Jul 15;237(2):601–604. doi: 10.1042/bj2370601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farrington J. A., Land E. J., Swallow A. J. The one-electron reduction potentials of NAD. Biochim Biophys Acta. 1980 Apr 2;590(2):273–276. doi: 10.1016/0005-2728(80)90031-6. [DOI] [PubMed] [Google Scholar]
  11. Fenna R., Zeng J., Davey C. Structure of the green heme in myeloperoxidase. Arch Biochem Biophys. 1995 Jan 10;316(1):653–656. doi: 10.1006/abbi.1995.1086. [DOI] [PubMed] [Google Scholar]
  12. Forni L. G., Willson R. L. Thiyl and phenoxyl free radicals and NADH. Direct observation of one-electron oxidation. Biochem J. 1986 Dec 15;240(3):897–903. doi: 10.1042/bj2400897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GROSS A. J., SIZER I. W. The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem. 1959 Jun;234(6):1611–1614. [PubMed] [Google Scholar]
  14. Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
  15. Harauchi T., Yoshizaki T. A fluorimetric guaiacol method for thyroid peroxidase activity. Anal Biochem. 1982 Nov 1;126(2):278–284. doi: 10.1016/0003-2697(82)90516-4. [DOI] [PubMed] [Google Scholar]
  16. Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem. 1979 Sep 25;254(18):9101–9106. [PubMed] [Google Scholar]
  17. Hoogland H., Dekker H. L., van Riel C., van Kuilenburg A., Muijsers A. O., Wever R. A steady-state study on the formation of Compounds II and III of myeloperoxidase. Biochim Biophys Acta. 1988 Aug 10;955(3):337–345. doi: 10.1016/0167-4838(88)90213-0. [DOI] [PubMed] [Google Scholar]
  18. KLEBANOFF S. J. An interrelationship between ergothioneine, certain phenolic hormones and peroxidase. Biochim Biophys Acta. 1962 Jan 29;56:460–469. doi: 10.1016/0006-3002(62)90597-8. [DOI] [PubMed] [Google Scholar]
  19. Keller R. J., Hinson J. A. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system. Drug Metab Dispos. 1991 Jan-Feb;19(1):184–187. [PubMed] [Google Scholar]
  20. Kettle A. J., Winterbourn C. C. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J. 1988 Jun 1;252(2):529–536. doi: 10.1042/bj2520529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Klebanoff S. J., Waltersdorph A. M., Rosen H. Antimicrobial activity of myeloperoxidase. Methods Enzymol. 1984;105:399–403. doi: 10.1016/s0076-6879(84)05055-2. [DOI] [PubMed] [Google Scholar]
  22. Land E. J., Swallow A. J. One-electron reactions in biochemical systems as studied by pulse radiolysis. IV. Oxidation of dihydronicotinamide-adenine dinucleotide. Biochim Biophys Acta. 1971 Apr 6;234(1):34–42. doi: 10.1016/0005-2728(71)90126-5. [DOI] [PubMed] [Google Scholar]
  23. Marquez L. A., Dunford H. B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J Biol Chem. 1995 Dec 22;270(51):30434–30440. doi: 10.1074/jbc.270.51.30434. [DOI] [PubMed] [Google Scholar]
  24. Marquez L. A., Dunford H. B. Transient and steady-state kinetics of the oxidation of scopoletin by horseradish peroxidase compounds I, II and III in the presence of NADH. Eur J Biochem. 1995 Oct 1;233(1):364–371. doi: 10.1111/j.1432-1033.1995.364_1.x. [DOI] [PubMed] [Google Scholar]
  25. Marquez L. A., Dunford H. B., Van Wart H. Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function. J Biol Chem. 1990 Apr 5;265(10):5666–5670. [PubMed] [Google Scholar]
  26. Marquez L. A., Huang J. T., Dunford H. B. Spectral and kinetic studies on the formation of myeloperoxidase compounds I and II: roles of hydrogen peroxide and superoxide. Biochemistry. 1994 Feb 15;33(6):1447–1454. doi: 10.1021/bi00172a022. [DOI] [PubMed] [Google Scholar]
  27. Michot J. L., Virion A., Deme D., De Prailaune S., Pommier J. NADPH oxidation catalyzed by the peroxidase/H2O2 system. Guaiacol-mediated and scopoletin-mediated oxidation of NADPH to NADPH+. Eur J Biochem. 1985 May 2;148(3):441–445. doi: 10.1111/j.1432-1033.1985.tb08859.x. [DOI] [PubMed] [Google Scholar]
  28. Modi S., Behere D. V., Mitra S. Binding of aromatic donor molecules to lactoperoxidase: proton NMR and optical difference spectroscopic studies. Biochim Biophys Acta. 1989 Jul 6;996(3):214–225. doi: 10.1016/0167-4838(89)90250-1. [DOI] [PubMed] [Google Scholar]
  29. Morel F., Doussiere J., Vignais P. V. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem. 1991 Nov 1;201(3):523–546. doi: 10.1111/j.1432-1033.1991.tb16312.x. [DOI] [PubMed] [Google Scholar]
  30. Nakamura M., Yamazaki I., Kotani T., Ohtaki S. Thyroid peroxidase selects the mechanism of either 1- or 2-electron oxidation of phenols, depending on their substituents. J Biol Chem. 1985 Nov 5;260(25):13546–13552. [PubMed] [Google Scholar]
  31. Newmyer S. L., Ortiz de Montellano P. R. Horseradish peroxidase His-42 --> Ala, His-42 --> Val, and Phe-41 --> Ala mutants. Histidine catalysis and control of substrate access to the heme iron. J Biol Chem. 1995 Aug 18;270(33):19430–19438. doi: 10.1074/jbc.270.33.19430. [DOI] [PubMed] [Google Scholar]
  32. Rossi F., Romeo D., Patriarca P. Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leucocytes and macrophages. J Reticuloendothel Soc. 1972 Aug;12(2):127–149. [PubMed] [Google Scholar]
  33. Sakurada J., Takahashi S., Hosoya T. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase. J Biol Chem. 1986 Jul 25;261(21):9657–9662. [PubMed] [Google Scholar]
  34. Stendahl O., Coble B. I., Dahlgren C., Hed J., Molin L. Myeloperoxidase modulates the phagocytic activity of polymorphonuclear neutrophil leukocytes. Studies with cells from a myeloperoxidase-deficient patient. J Clin Invest. 1984 Feb;73(2):366–373. doi: 10.1172/JCI111221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Subrahmanyam V. V., O'Brien P. J. Peroxidase catalysed oxygen activation by arylamine carcinogens and phenol. Chem Biol Interact. 1985 Dec 31;56(2-3):185–199. doi: 10.1016/0009-2797(85)90005-5. [DOI] [PubMed] [Google Scholar]
  36. Suzuki K., Yamada M., Akashi K., Fujikura T. Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60 cells. Arch Biochem Biophys. 1986 Feb 15;245(1):167–173. doi: 10.1016/0003-9861(86)90201-8. [DOI] [PubMed] [Google Scholar]
  37. Svensson B. E., Domeij K., Lindvall S., Rydell G. Peroxidase and peroxidase-oxidase activities of isolated human myeloperoxidases. Biochem J. 1987 Mar 15;242(3):673–680. doi: 10.1042/bj2420673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takayama K., Nakano M. Mechanism of thyroxine-mediated oxidation of reduced nicotinamide adenine dinucleotide in peroxidase-H2O2 system. Biochemistry. 1977 May 3;16(9):1921–1926. doi: 10.1021/bi00628a025. [DOI] [PubMed] [Google Scholar]
  39. YAMAZAKI I., MASON H. S., PIETTE L. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. J Biol Chem. 1960 Aug;235:2444–2449. [PubMed] [Google Scholar]
  40. Yamazaki I., Yokota K. Oxidation states of peroxidase. Mol Cell Biochem. 1973 Nov 15;2(1):39–52. doi: 10.1007/BF01738677. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES