Abstract
Human liver dihydrodiol dehydrogenase (DD; EC 1.3.1.20) exists in isoforms (DD1, DD2 and DD4) composed of 323 amino acids. DD1 and DD2 share 98% amino acid sequence identity, but show lower identities (approx. 83%) with DD4, in which a marked difference is seen in the C-terminal ten amino acids. DD4 exhibits unique catalytic properties, such as the ability to oxidize both (R)- and (S)-alicyclic alcohols equally, high dehydrogenase activity for bile acids, potent inhibition by steroidal anti-inflammatory drugs and activation by sulphobromophthalein and clofibric acid derivatives. In this study, we have prepared chimaeric enzymes, in which we exchanged the C-terminal 39 residues between the two enzymes. Compared with DD1, CDD1-4 (DD1 with the C-terminal sequence of DD4) had increased kcat/Km values for 3alpha-hydroxy-5beta-androstanes and bile acids of 3-9-fold and decreased values for the other substrates by 5-100-fold. It also became highly sensitive to DD4 inhibitors such as phenolphthalein and hexoestrol. Another chimaeric enzyme, CDD4-1 (DD4 with the C-terminal sequence of DD1), showed the same (S)-stereospecificity for the alicyclic alcohols as DD1, had decreased kcat/Km values for bile acids with 7beta- or 12alpha-hydroxy groups by more than 120-fold and was resistant to inhibition by betamethasone. In addition, the activation effects of sulphobromophthalein and bezafibrate decreased or disappeared for CDD4-1. The recombinant DD4 with the His314-->Pro (the corresponding residue of DD1) mutation showed intermediate changes in the properties between those of wild-type DD4 and CDD4-1. The results indicate that the binding of substrates, inhibitors and activators to the enzymes is controlled by residues in their C-terminal domains; multiple residues co-ordinately act as determinants for substrate specificity and inhibitor sensitivity.
Full Text
The Full Text of this article is available as a PDF (144.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barski O. A., Gabbay K. H., Bohren K. M. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry. 1996 Nov 12;35(45):14276–14280. doi: 10.1021/bi9619740. [DOI] [PubMed] [Google Scholar]
- Barski O. A., Gabbay K. H., Grimshaw C. E., Bohren K. M. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry. 1995 Sep 5;34(35):11264–11275. doi: 10.1021/bi00035a036. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Albert R. H., Jez J. M., Ma H., Penning T. M., Lewis M. Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure. 1997 Jun 15;5(6):799–812. doi: 10.1016/s0969-2126(97)00234-7. [DOI] [PubMed] [Google Scholar]
- Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
- Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem. 1992 Oct 15;267(29):20965–20970. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Ciaccio P. J., Tew K. D. cDNA and deduced amino acid sequences of a human colon dihydrodiol dehydrogenase. Biochim Biophys Acta. 1994 Jun 28;1186(1-2):129–132. doi: 10.1016/0005-2728(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deyashiki Y., Tamada Y., Miyabe Y., Nakanishi M., Matsuura K., Hara A. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver. J Biochem. 1995 Aug;118(2):285–290. doi: 10.1093/oxfordjournals.jbchem.a124904. [DOI] [PubMed] [Google Scholar]
- Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity. Biochem J. 1992 Mar 15;282(Pt 3):741–746. doi: 10.1042/bj2820741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara A., Hasebe K., Hayashibara M., Matsuura K., Nakayama T., Sawada H. Dihydrodiol dehydrogenases in guinea pig liver. Biochem Pharmacol. 1986 Nov 15;35(22):4005–4012. doi: 10.1016/0006-2952(86)90019-5. [DOI] [PubMed] [Google Scholar]
- Hara A., Matsuura K., Tamada Y., Sato K., Miyabe Y., Deyashiki Y., Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996 Jan 15;313(Pt 2):373–376. doi: 10.1042/bj3130373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara A., Taniguchi H., Nakayama T., Sawada H. Purification and properties of multiple forms of dihydrodiol dehydrogenase from human liver. J Biochem. 1990 Aug;108(2):250–254. doi: 10.1093/oxfordjournals.jbchem.a123189. [DOI] [PubMed] [Google Scholar]
- Harrison D. H., Bohren K. M., Ringe D., Petsko G. A., Gabbay K. H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry. 1994 Mar 1;33(8):2011–2020. doi: 10.1021/bi00174a006. [DOI] [PubMed] [Google Scholar]
- Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jez J. M., Flynn T. G., Penning T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997 Sep 15;54(6):639–647. doi: 10.1016/s0006-2952(97)84253-0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsuura K., Deyashiki Y., Sato K., Ishida N., Miwa G., Hara A. Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis. Biochem J. 1997 Apr 1;323(Pt 1):61–64. doi: 10.1042/bj3230061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura K., Hara A., Kato M., Deyashiki Y., Miyabe Y., Ishikura S., Sugiyama T., Katagiri Y. Activation of human liver 3alpha-hydroxysteroid dehydrogenase by clofibrate derivatives. J Pharmacol Exp Ther. 1998 Jun;285(3):1096–1103. [PubMed] [Google Scholar]
- Matsuura K., Tamada Y., Deyashiki Y., Miyabe Y., Nakanishi M., Ohya I., Hara A. Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein. Biochem J. 1996 Jan 1;313(Pt 1):179–184. doi: 10.1042/bj3130179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura K., Tamada Y., Sato K., Iwasa H., Miwa G., Deyashiki Y., Hara A. Involvement of two basic residues (Lys-270 and Arg-276) of human liver 3 alpha-hydroxysteroid dehydrogenase in NADP(H) binding and activation by sulphobromophthalein: site-directed mutagenesis and kinetic analysis. Biochem J. 1997 Feb 15;322(Pt 1):89–93. doi: 10.1042/bj3220089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohara H., Nakayama T., Deyashiki Y., Hara A., Miyabe Y., Tsukada F. Reduction of prostaglandin D2 to 9 alpha,11 beta-prostaglandin F2 by a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):59–65. doi: 10.1016/0005-2760(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Penning T. M. Molecular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev. 1997 Jun;18(3):281–305. doi: 10.1210/edrv.18.3.0302. [DOI] [PubMed] [Google Scholar]
- Penning T. M., Smithgall T. E., Askonas L. J., Sharp R. B. Rat liver 3 alpha-hydroxysteroid dehydrogenase. Steroids. 1986 Apr-May;47(4-5):221–247. doi: 10.1016/0039-128x(86)90094-2. [DOI] [PubMed] [Google Scholar]
- Petrash J. M., Harter T. M., Devine C. S., Olins P. O., Bhatnagar A., Liu S., Srivastava S. K. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem. 1992 Dec 5;267(34):24833–24840. [PubMed] [Google Scholar]
- Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
- Tomlinson D. R., Stevens E. J., Diemel L. T. Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci. 1994 Aug;15(8):293–297. doi: 10.1016/0165-6147(94)90010-8. [DOI] [PubMed] [Google Scholar]
- Urzhumtsev A., Tête-Favier F., Mitschler A., Barbanton J., Barth P., Urzhumtseva L., Biellmann J. F., Podjarny A., Moras D. A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure. 1997 May 15;5(5):601–612. doi: 10.1016/s0969-2126(97)00216-5. [DOI] [PubMed] [Google Scholar]
- Wilson D. K., Nakano T., Petrash J. M., Quiocho F. A. 1.7 A structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor. Biochemistry. 1995 Nov 7;34(44):14323–14330. doi: 10.1021/bi00044a009. [DOI] [PubMed] [Google Scholar]
- Wilson D. K., Tarle I., Petrash J. M., Quiocho F. A. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9847–9851. doi: 10.1073/pnas.90.21.9847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winters C. J., Molowa D. T., Guzelian P. S. Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry. 1990 Jan 30;29(4):1080–1087. doi: 10.1021/bi00456a034. [DOI] [PubMed] [Google Scholar]
- Wörner W., Oesch F. Identity of dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase in rat but not in rabbit liver cytosol. FEBS Lett. 1984 May 21;170(2):263–267. doi: 10.1016/0014-5793(84)81325-3. [DOI] [PubMed] [Google Scholar]