Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):437–442. doi: 10.1042/bj3360437

Genomic organization, 5'-flanking region and chromosomal localization of the human glutathione transferase A4 gene.

F Desmots 1, C Rauch 1, C Henry 1, A Guillouzo 1, F Morel 1
PMCID: PMC1219889  PMID: 9820822

Abstract

We have isolated and characterized a human glutathione transferase A4 (hGSTA4) subunit gene from a yeast artificial chromosome containing several other glutathione transferase alpha genes and pseudogenes. The homodimeric protein hGSTA4-4, is involved in the detoxification of 4-hydroxynonenal and other reactive electrophiles produced by oxidative metabolism, and may have a significant role in protecting intracellular components from oxidative damage. The hGSTA4 gene spans nearly 18 kb, contains seven exons, maps onto chromosome 6p12, and lies in close proximity to the 7SK small nuclear RNA gene in a head-to-tail orientation. The intron/exon borders conform to the standard rules, an open reading frame is present beginning at position 154 in exon 2, and the stop codon is at position 822 in exon 7. The transcription initiation site has been determined by primer extension analysis and is located 135 bp upstream of intron 1. Isolation and sequencing of the hGSTA4 gene 5'-flanking region revealed it to be devoid of TATA or CCAAT boxes but it does contain an initiator element overlapping the transcription start site, a GC box and putative binding sites for transcription factors AP1, STAT, GATA1 and NF-kappaB. Reverse transcription-PCR analysis revealed that hGSTA4 mRNA was present in all the tissues tested, although in low amounts, suggesting that this subunit may be ubiquitously expressed.

Full Text

The Full Text of this article is available as a PDF (186.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Board P. G., Baker R. T., Chelvanayagam G., Jermiin L. S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. doi: 10.1042/bj3280929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Board P. G. Identification of cDNAs encoding two human alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochem J. 1998 Mar 1;330(Pt 2):827–831. doi: 10.1042/bj3300827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Board P. G., Webb G. C. Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2377–2381. doi: 10.1073/pnas.84.8.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
  5. Driscoll C. T., Darlington G. J., Maraia R. J. The conserved 7SK snRNA gene localizes to human chromosome 6 by homolog exclusion probing of somatic cell hybrid RNA. Nucleic Acids Res. 1994 Mar 11;22(5):722–725. doi: 10.1093/nar/22.5.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frischauf A. M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. doi: 10.1016/s0022-2836(83)80190-9. [DOI] [PubMed] [Google Scholar]
  7. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  8. Hubatsch I., Ridderström M., Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 1998 Feb 15;330(Pt 1):175–179. doi: 10.1042/bj3300175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kleinert H., Bredow S., Benecke B. J. Expression of a human 7S K RNA gene in vivo requires a novel pol III upstream element. EMBO J. 1990 Mar;9(3):711–718. doi: 10.1002/j.1460-2075.1990.tb08164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kleinert H., Gladen A., Geisler M., Benecke B. J. Differential regulation of transcription of human 7 S K and 7 S L RNA genes. J Biol Chem. 1988 Aug 15;263(23):11511–11515. [PubMed] [Google Scholar]
  11. Klöne A., Hussnätter R., Sies H. Cloning, sequencing and characterization of the human alpha glutathione S-transferase gene corresponding to the cDNA clone pGTH2. Biochem J. 1992 Aug 1;285(Pt 3):925–928. doi: 10.1042/bj2850925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lorper M., Schulz W. A., Morel F., Warskulat U., Sies H. Positive and negative regulatory regions in promoters of human glutathione transferase alpha genes. Biol Chem Hoppe Seyler. 1996 Jan;377(1):39–46. doi: 10.1515/bchm3.1996.377.1.39. [DOI] [PubMed] [Google Scholar]
  13. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moon I. S., Krause M. O. Common RNA polymerase I, II, and III upstream elements in mouse 7SK gene locus revealed by the inverse polymerase chain reaction. DNA Cell Biol. 1991 Jan-Feb;10(1):23–32. doi: 10.1089/dna.1991.10.23. [DOI] [PubMed] [Google Scholar]
  15. Morel F., Schulz W. A., Sies H. Gene structure and regulation of expression of human glutathione S-transferases alpha. Biol Chem Hoppe Seyler. 1994 Oct;375(10):641–649. [PubMed] [Google Scholar]
  16. Murphy S., Di Liegro C., Melli M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell. 1987 Oct 9;51(1):81–87. doi: 10.1016/0092-8674(87)90012-2. [DOI] [PubMed] [Google Scholar]
  17. Murphy S., Tripodi M., Melli M. A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Res. 1986 Dec 9;14(23):9243–9260. doi: 10.1093/nar/14.23.9243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pemble S. E., Wardle A. F., Taylor J. B. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J. 1996 Nov 1;319(Pt 3):749–754. doi: 10.1042/bj3190749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rhoads D. M., Zarlengo R. P., Tu C. P. The basic glutathione S-transferases from human livers are products of separate genes. Biochem Biophys Res Commun. 1987 May 29;145(1):474–481. doi: 10.1016/0006-291x(87)91345-3. [DOI] [PubMed] [Google Scholar]
  20. Rozen F., Nguyen T., Pickett C. B. Isolation and characterization of a human glutathione S-transferase Ha1 subunit gene. Arch Biochem Biophys. 1992 Feb 1;292(2):589–593. doi: 10.1016/0003-9861(92)90035-u. [DOI] [PubMed] [Google Scholar]
  21. Röhrdanz E., Nguyen T., Pickett C. B. Isolation and characterization of the human glutathione S-transferase A2 subunit gene. Arch Biochem Biophys. 1992 Nov 1;298(2):747–752. doi: 10.1016/0003-9861(92)90475-c. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singhal S. S., Awasthi S., Srivastava S. K., Zimniak P., Ansari N. H., Awasthi Y. C. Novel human ocular glutathione S-transferases with high activity toward 4-hydroxynonenal. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):142–150. [PubMed] [Google Scholar]
  24. Singhal S. S., Zimniak P., Awasthi S., Piper J. T., He N. G., Teng J. I., Petersen D. R., Awasthi Y. C. Several closely related glutathione S-transferase isozymes catalyzing conjugation of 4-hydroxynonenal are differentially expressed in human tissues. Arch Biochem Biophys. 1994 Jun;311(2):242–250. doi: 10.1006/abbi.1994.1233. [DOI] [PubMed] [Google Scholar]
  25. Singhal S. S., Zimniak P., Sharma R., Srivastava S. K., Awasthi S., Awasthi Y. C. A novel glutathione S-transferase isozyme similar to GST 8-8 of rat and mGSTA4-4 (GST 5.7) of mouse is selectively expressed in human tissues. Biochim Biophys Acta. 1994 Feb 16;1204(2):279–286. doi: 10.1016/0167-4838(94)90019-1. [DOI] [PubMed] [Google Scholar]
  26. Smale S. T., Schmidt M. C., Berk A. J., Baltimore D. Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4509–4513. doi: 10.1073/pnas.87.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Suzuki T., Johnston P. N., Board P. G. Structure and organization of the human alpha class glutathione S-transferase genes and related pseudogenes. Genomics. 1993 Dec;18(3):680–686. doi: 10.1016/s0888-7543(05)80373-8. [DOI] [PubMed] [Google Scholar]
  28. Taiar N., Qumsiyeh M. B., Croteau S., Rollet J., Benkhalifa M. Detection of t(X;Y) in 2 XX males using fluorescent in situ hybridization. Ann Genet. 1995;38(2):102–105. [PubMed] [Google Scholar]
  29. Tu C. P., Qian B. Human liver glutathione S-transferases: complete primary sequence of an Ha subunit cDNA. Biochem Biophys Res Commun. 1986 Nov 26;141(1):229–237. doi: 10.1016/s0006-291x(86)80358-8. [DOI] [PubMed] [Google Scholar]
  30. Viegas-Pequignot E., Dutrillaux B., Magdelenat H., Coppey-Moisan M. Mapping of single-copy DNA sequences on human chromosomes by in situ hybridization with biotinylated probes: enhancement of detection sensitivity by intensified-fluorescence digital-imaging microscopy. Proc Natl Acad Sci U S A. 1989 Jan;86(2):582–586. doi: 10.1073/pnas.86.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wassarman D. A., Steitz J. A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol. 1991 Jul;11(7):3432–3445. doi: 10.1128/mcb.11.7.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yean D., Gralla J. Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol. 1997 Jul;17(7):3809–3816. doi: 10.1128/mcb.17.7.3809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zieve G., Benecke B. J., Penman S. Synthesis of two classes of small RNA species in vivo and in vitro. Biochemistry. 1977 Oct 4;16(20):4520–4525. doi: 10.1021/bi00639a029. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES