Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):451–459. doi: 10.1042/bj3360451

Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid.

H S Finstad 1, C A Drevon 1, M A Kulseth 1, A V Synstad 1, E Knudsen 1, S O Kolset 1
PMCID: PMC1219891  PMID: 9820824

Abstract

The monocytic cell line U937-1 was cultured in the presence of eicosapentaenoic acid (20:5, n-3) (EPA) or oleic acid (18:1, n-9) (OA). EPA caused a dose-dependent inhibition of cell proliferation, whereas OA had no effect. At the highest EPA concentrations, 120 and 240 microM, inhibition of cell proliferation was accompanied by initiation of apoptosis. A concentration of 60 microM EPA caused a 35% reduction in cell proliferation without inducing apoptosis, and was therefore used for further studies. Addition of antioxidants or inhibitors of eicosanoid synthesis had no influence on the reduced cell proliferation after EPA treatment. The inhibition required continuous presence of EPA in the incubation medium as the cells resumed a normal proliferation rate when they were placed in EPA-free medium. The inhibition of proliferation was not accompanied by differentiation into macrophage-like cells, as expression of serglycin and the ability to perform respiratory burst was unaffected by EPA. Expression of CD23 mRNA increased when the cells were incubated with EPA, but to a smaller extent than after retinoic acid (RA) or PMA treatment. Furthermore, expression of the monocytic differentiation markers CD36 and CD68 was lower in cells treated with EPA or OA when compared with untreated cells. The cell cycle distribution of U937-1 cells was similar in cells incubated with EPA or PMA, whereas RA-treated cells accumulated in the G1 phase. Side scatter increased in cells incubated with EPA and OA, which was ascribed to an accumulation of lipid droplets after examination of the cells by electron microscopy. The number of droplets per cell was higher in cells exposed to EPA than OA. The cellular triacylglycerol (TAG) increased 5.5- and 15.5-fold after incubation with OA and EPA respectively. No difference in the cellular content of cholesterol compared with untreated cells was observed. The TAG fraction in EPA-treated cells contained high amounts of EPA and docosapentaenoic acid and minor amounts of docosahexaenoic acid, whereas OA-treated cells had high levels of OA in the TAG. In cells incubated with a sulphur-substituted EPA, only minor effects on cell proliferation and no accumulation of cellular TAG were observed. These findings may indicate the existence of other mechanisms for regulation of cell behaviour by very-long-chain polyunsaturated n-3 fatty acids than the well established lipid peroxide and eicosanoid pathways.

Full Text

The Full Text of this article is available as a PDF (271.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Alexander R. W. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995 Feb;25(2):155–161. doi: 10.1161/01.hyp.25.2.155. [DOI] [PubMed] [Google Scholar]
  3. Anderson K. M., Ondrey F., Harris J. E. ETYA, a pleotropic membrane-active arachidonic acid analogue affects multiple signal transduction pathways in cultured transformed mammalian cells. Clin Biochem. 1992 Feb;25(1):1–9. doi: 10.1016/0009-9120(92)80038-i. [DOI] [PubMed] [Google Scholar]
  4. Benestad H. B., Strøm-Gundersen I. Flow cytometry of mouse bone marrow cells cultured in vivo or in vitro. Exp Hematol. 1982 Apr;10(4):343–351. [PubMed] [Google Scholar]
  5. Bjare U., Lundblad G., Ivhed I., Nilsson K. Glycosidase and phosphatase activities in U-937 and some clones and sublines. Int J Biochem. 1988;20(2):211–216. doi: 10.1016/0020-711x(88)90489-2. [DOI] [PubMed] [Google Scholar]
  6. Bjørneboe A., Søyland E., Bjørneboe G. E., Rajka G., Drevon C. A. Effect of dietary supplementation with eicosapentaenoic acid in the treatment of atopic dermatitis. Br J Dermatol. 1987 Oct;117(4):463–469. doi: 10.1111/j.1365-2133.1987.tb04926.x. [DOI] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darzynkiewicz Z., Li X., Gong J. Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol. 1994;41:15–38. doi: 10.1016/s0091-679x(08)61707-0. [DOI] [PubMed] [Google Scholar]
  9. Denizot Y., Najid A., Rigaud M. Incorporation of arachidonic acid in a human cancer gastric tumor cell line (HGT) at various stages of cell proliferation. Cancer Lett. 1993 Feb;68(2-3):199–205. doi: 10.1016/0304-3835(93)90147-2. [DOI] [PubMed] [Google Scholar]
  10. Drevon C. A., Hovig T. The effects of cholesterol/fat feeding on lipid levels and morphological structures in liver, kidney and spleen in guinea pigs. Acta Pathol Microbiol Scand A. 1977 Jan;85A(1):1–18. doi: 10.1111/j.1699-0463.1977.tb03862.x. [DOI] [PubMed] [Google Scholar]
  11. Drevon C. A., Nenseter M. S., Brude I. R., Finstad H. S., Kolset S. O., Rustan A. C. Omega-3 fatty acids--nutritional aspects. Can J Cardiol. 1995 Oct;11 (Suppl G):47G–54G. [PubMed] [Google Scholar]
  12. Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993 Jun 5;268(16):11811–11816. [PubMed] [Google Scholar]
  13. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  14. Fan Y. Y., Chapkin R. S., Ramos K. S. Dietary lipid source alters murine macrophage/vascular smooth muscle cell interactions in vitro. J Nutr. 1996 Sep;126(9):2083–2088. doi: 10.1093/jn/126.9.2083. [DOI] [PubMed] [Google Scholar]
  15. Finstad H. S., Kolset S. O., Holme J. A., Wiger R., Farrants A. K., Blomhoff R., Drevon C. A. Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood. 1994 Dec 1;84(11):3799–3809. [PubMed] [Google Scholar]
  16. Finstad H. S., Myhrstad M. C., Heimli H., Lømo J., Blomhoff H. K., Kolset S. O., Drevon C. A. Multiplication and death-type of leukemia cell lines exposed to very long-chain polyunsaturated fatty acids. Leukemia. 1998 Jun;12(6):921–929. doi: 10.1038/sj.leu.2401030. [DOI] [PubMed] [Google Scholar]
  17. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenwalt D. E., Lipsky R. H., Ockenhouse C. F., Ikeda H., Tandon N. N., Jamieson G. A. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood. 1992 Sep 1;80(5):1105–1115. [PubMed] [Google Scholar]
  19. Göttlicher M., Widmark E., Li Q., Gustafsson J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4653–4657. doi: 10.1073/pnas.89.10.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harada N., Okamura S., Kubota A., Shimoda K., Ikematsu W., Kondo S., Harada M., Niho Y. Analysis of acute myeloid leukemia cells by flow cytometry, introducing a new light-scattering classification. J Cancer Res Clin Oncol. 1994;120(9):553–557. doi: 10.1007/BF01221034. [DOI] [PubMed] [Google Scholar]
  21. Hatala M. A., Rayburn J., Rose D. P. Comparison of linoleic acid and eicosapentaenoic acid incorporation into human breast cancer cells. Lipids. 1994 Dec;29(12):831–837. doi: 10.1007/BF02536250. [DOI] [PubMed] [Google Scholar]
  22. Hirai A., Hamazaki T., Terano T., Nishikawa T., Tamura Y., Kamugai A., Jajiki J. Eicosapentaenoic acid and platelet function in Japanese. Lancet. 1980 Nov 22;2(8204):1132–1133. doi: 10.1016/s0140-6736(80)92558-1. [DOI] [PubMed] [Google Scholar]
  23. Holness C. L., Simmons D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993 Mar 15;81(6):1607–1613. [PubMed] [Google Scholar]
  24. Huang Z. H., Hii C. S., Rathjen D. A., Poulos A., Murray A. W., Ferrante A. N-6 and n-3 polyunsaturated fatty acids stimulate translocation of protein kinase Calpha, -betaI, -betaII and -epsilon and enhance agonist-induced NADPH oxidase in macrophages. Biochem J. 1997 Jul 15;325(Pt 2):553–557. doi: 10.1042/bj3250553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. doi: 10.1038/347645a0. [DOI] [PubMed] [Google Scholar]
  26. Jiang C., Ting A. T., Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998 Jan 1;391(6662):82–86. doi: 10.1038/34184. [DOI] [PubMed] [Google Scholar]
  27. Kikutani H., Inui S., Sato R., Barsumian E. L., Owaki H., Yamasaki K., Kaisho T., Uchibayashi N., Hardy R. R., Hirano T. Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell. 1986 Dec 5;47(5):657–665. doi: 10.1016/0092-8674(86)90508-8. [DOI] [PubMed] [Google Scholar]
  28. Kremer J. M. Effects of modulation of inflammatory and immune parameters in patients with rheumatic and inflammatory disease receiving dietary supplementation of n-3 and n-6 fatty acids. Lipids. 1996 Mar;31 (Suppl):S243–S247. doi: 10.1007/BF02637084. [DOI] [PubMed] [Google Scholar]
  29. Kromann N., Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950-1974. Acta Med Scand. 1980;208(5):401–406. [PubMed] [Google Scholar]
  30. Kulseth M. A., Mustorp S. L., Uhlin-Hansen L., Oberg F., Kolset S. O. Serglycin expression during monocytic differentiation of U937-1 cells. Glycobiology. 1998 Aug;8(8):747–753. doi: 10.1093/glycob/8.8.747. [DOI] [PubMed] [Google Scholar]
  31. Larsen L. N., Hørvik K., Sørensen H. I., Bremer J. Polyunsaturated thia- and oxa-fatty acids: incorporation into cell-lipids and their effects on arachidonic acid- and eicosanoid synthesis. Biochim Biophys Acta. 1997 Oct 18;1348(3):346–354. doi: 10.1016/s0005-2760(97)00075-1. [DOI] [PubMed] [Google Scholar]
  32. Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
  33. Oberg F., Botling J., Nilsson K. Macrophages and the cytokine network. Transplant Proc. 1993 Apr;25(2):2044–2047. [PubMed] [Google Scholar]
  34. Obermeier H., Hrboticky N., Sellmayer A. Differential effects of polyunsaturated fatty acids on cell growth and differentiation of premonocytic U937 cells. Biochim Biophys Acta. 1995 Apr 28;1266(2):179–185. doi: 10.1016/0167-4889(95)00014-j. [DOI] [PubMed] [Google Scholar]
  35. Parton R. G., Prydz K., Bomsel M., Simons K., Griffiths G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J Cell Biol. 1989 Dec;109(6 Pt 2):3259–3272. doi: 10.1083/jcb.109.6.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ramprasad M. P., Terpstra V., Kondratenko N., Quehenberger O., Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14833–14838. doi: 10.1073/pnas.93.25.14833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ranheim T., Gedde-Dahl A., Rustan A. C., Drevon C. A. Influence of eicosapentaenoic acid (20:5, n-3) on secretion of lipoproteins in CaCo-2 cells. J Lipid Res. 1992 Sep;33(9):1281–1293. [PubMed] [Google Scholar]
  38. Ricote M., Li A. C., Willson T. M., Kelly C. J., Glass C. K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998 Jan 1;391(6662):79–82. doi: 10.1038/34178. [DOI] [PubMed] [Google Scholar]
  39. Rosenfeld M. E. Cellular mechanisms in the development of atherosclerosis. Diabetes Res Clin Pract. 1996 Feb;30 (Suppl):1–11. doi: 10.1016/s0168-8227(96)80032-5. [DOI] [PubMed] [Google Scholar]
  40. Rustan A. C., Nossen J. O., Christiansen E. N., Drevon C. A. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A:1,2-diacylglycerol acyltransferase. J Lipid Res. 1988 Nov;29(11):1417–1426. [PubMed] [Google Scholar]
  41. Spittler A., Schiller C., Willheim M., Tempfer C., Winkler S., Boltz-Nitulescu G. IL-10 augments CD23 expression on U937 cells and down-regulates IL-4-driven CD23 expression on cultured human blood monocytes: effects of IL-10 and other cytokines on cell phenotype and phagocytosis. Immunology. 1995 Jun;85(2):311–317. [PMC free article] [PubMed] [Google Scholar]
  42. Søyland E., Funk J., Rajka G., Sandberg M., Thune P., Rustad L., Helland S., Middelfart K., Odu S., Falk E. S. Effect of dietary supplementation with very-long-chain n-3 fatty acids in patients with psoriasis. N Engl J Med. 1993 Jun 24;328(25):1812–1816. doi: 10.1056/NEJM199306243282504. [DOI] [PubMed] [Google Scholar]
  43. Søyland E., Nenseter M. S., Braathen L., Drevon C. A. Very long chain n-3 and n-6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. Eur J Clin Invest. 1993 Feb;23(2):112–121. doi: 10.1111/j.1365-2362.1993.tb00750.x. [DOI] [PubMed] [Google Scholar]
  44. Terstappen L. W., Könemann S., Safford M., Loken M. R., Zurlutter K., Büchner T., Hiddemann W., Wörmann B. Flow cytometric characterization of acute myeloid leukemia. Part 1. Significance of light scattering properties. Leukemia. 1991 Apr;5(4):315–321. [PubMed] [Google Scholar]
  45. Triggiani M., Oriente A., Marone G. Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages. J Immunol. 1994 Feb 1;152(3):1394–1403. [PubMed] [Google Scholar]
  46. Triggiani M., Oriente A., Seeds M. C., Bass D. A., Marone G., Chilton F. H. Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool. J Exp Med. 1995 Nov 1;182(5):1181–1190. doi: 10.1084/jem.182.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Uhlin-Hansen L., Wik T., Kjellén L., Berg E., Forsdahl F., Kolset S. O. Proteoglycan metabolism in normal and inflammatory human macrophages. Blood. 1993 Nov 1;82(9):2880–2889. [PubMed] [Google Scholar]
  48. Zeisel S. H., da Costa K. A., Albright C. D., Shin O. H. Choline and hepatocarcinogenesis in the rat. Adv Exp Med Biol. 1995;375:65–74. doi: 10.1007/978-1-4899-0949-7_6. [DOI] [PubMed] [Google Scholar]
  49. de Vente J., Kiley S., Garris T., Bryant W., Hooker J., Posekany K., Parker P., Cook P., Fletcher D., Ways D. K. Phorbol ester treatment of U937 cells with altered protein kinase C content and distribution induces cell death rather than differentiation. Cell Growth Differ. 1995 Apr;6(4):371–382. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES