Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):491–500. doi: 10.1042/bj3360491

Stimulatory and inhibitory actions of lysophosphatidylcholine, depending on its fatty acid residue, on the phospholipase C/Ca2+ system in HL-60 leukaemia cells.

F Okajima 1, K Sato 1, H Tomura 1, A Kuwabara 1, H Nochi 1, K Tamoto 1, Y Kondo 1, Y Tokumitsu 1, M Ui 1
PMCID: PMC1219895  PMID: 9820828

Abstract

We examined the mechanism of action of lysophosphatidylcholine (LPC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflammatory disorders, in HL-60 leukaemia cells. Extracellular 1-palmitoyl LPC increased the intracellular Ca2+ concentration in association with production of inositol phosphate. These actions of LPC were markedly inhibited by treatment of the cells with pertussis toxin and U73122, a phospholipase C inhibitor. The lipid-induced stimulation of the phospholipase C/Ca2+ system was also attenuated in the dibutyryl cAMP-induced differentiated (neutrophil-like) cells, in which phospholipase C activation induced by NaF or formyl-Met-Leu-Phe was enhanced. In contrast with the stimulatory action of 1-palmitoyl LPC, 1-stearoyl LPC was inhibitory for the phospholipase C/Ca2+ system stimulated by NaF as well as by 1-palmitoyl LPC or other Ca2+-mobilizing agonists. In a cell-free system, only an inhibitory effect on phospholipase C activity was observed even by 1-palmitoyl LPC; 1-stearoyl LPC was more inhibitive than 1-palmitoyl LPC. Taken together, these results suggest that atherogenic and inflammatory LPC exerts both stimulatory and inhibitory actions on the phospholipase C/Ca2+ system depending on the species of fatty acid residue of the lipid; the stimulatory effect is possibly mediated through G-protein-coupled receptors; the inhibitory effect might be caused by dysfunction of the components involved in the enzyme system owing to the amphiphilic nature of the lipid. 1-Palmitoyl LPC prefers the former receptor stimulation at least in intact cells, but 1-stearoyl LPC preferentially exerts the latter inhibitory action.

Full Text

The Full Text of this article is available as a PDF (207.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S., Bleu T., Huang W., Hallmark O. G., Coughlin S. R., Goetzl E. J. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997 Nov 17;417(3):279–282. doi: 10.1016/s0014-5793(97)01301-x. [DOI] [PubMed] [Google Scholar]
  2. Asaoka Y., Oka M., Yoshida K., Sasaki Y., Nishizuka Y. Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6447–6451. doi: 10.1073/pnas.89.14.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y., Morimoto S., Kitano S., Koh E., Fukuo K., Jiang B., Chen S., Yasuda O., Hirotani A., Ogihara T. Lysophosphatidylcholine causes Ca2+ influx, enhanced DNA synthesis and cytotoxicity in cultured vascular smooth muscle cells. Atherosclerosis. 1995 Jan 6;112(1):69–76. doi: 10.1016/0021-9150(94)05400-d. [DOI] [PubMed] [Google Scholar]
  4. Conforto A., Dudek R., Hoffmann M. R., Bing R. J. The production of nitric oxide in endothelial cells by amphiphiles. Life Sci. 1994;54(16):1143–1153. doi: 10.1016/0024-3205(94)00836-1. [DOI] [PubMed] [Google Scholar]
  5. Cowen D. S., Baker B., Dubyak G. R. Pertussis toxin produces differential inhibitory effects on basal, P2-purinergic, and chemotactic peptide-stimulated inositol phospholipid breakdown in HL-60 cells and HL-60 cell membranes. J Biol Chem. 1990 Sep 25;265(27):16181–16189. [PubMed] [Google Scholar]
  6. Cox D. A., Cohen M. L. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. Am J Physiol. 1996 Oct;271(4 Pt 2):H1706–H1710. doi: 10.1152/ajpheart.1996.271.4.H1706. [DOI] [PubMed] [Google Scholar]
  7. Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
  8. Freeman J. E., Kuo W. Y., Drenger B., Barnett T. N., Levine M. A., Flavahan N. A. Analysis of lysophophatidylcholine-induced endothelial dysfunction. J Cardiovasc Pharmacol. 1996 Sep;28(3):345–352. doi: 10.1097/00005344-199609000-00001. [DOI] [PubMed] [Google Scholar]
  9. Fries D. M., Penha R. G., D'Amico E. A., Abdalla D. S., Monteiro H. P. Oxidized low-density lipoprotein stimulates nitric oxide release by rabbit aortic endothelial cells. Biochem Biophys Res Commun. 1995 Feb 6;207(1):231–237. doi: 10.1006/bbrc.1995.1177. [DOI] [PubMed] [Google Scholar]
  10. Hirata K., Miki N., Kuroda Y., Sakoda T., Kawashima S., Yokoyama M. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circ Res. 1995 Jun;76(6):958–962. doi: 10.1161/01.res.76.6.958. [DOI] [PubMed] [Google Scholar]
  11. Honda Z., Nakamura M., Miki I., Minami M., Watanabe T., Seyama Y., Okado H., Toh H., Ito K., Miyamoto T. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991 Jan 24;349(6307):342–346. doi: 10.1038/349342a0. [DOI] [PubMed] [Google Scholar]
  12. Hurt-Camejo E., Camejo G. Potential involvement of type II phospholipase A2 in atherosclerosis. Atherosclerosis. 1997 Jul 11;132(1):1–8. doi: 10.1016/s0021-9150(97)00085-3. [DOI] [PubMed] [Google Scholar]
  13. Igarashi Y. Functional roles of sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J Biochem. 1997 Dec;122(6):1080–1087. doi: 10.1093/oxfordjournals.jbchem.a021865. [DOI] [PubMed] [Google Scholar]
  14. Inoue N., Hirata K., Yamada M., Hamamori Y., Matsuda Y., Akita H., Yokoyama M. Lysophosphatidylcholine inhibits bradykinin-induced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells. Circ Res. 1992 Dec;71(6):1410–1421. doi: 10.1161/01.res.71.6.1410. [DOI] [PubMed] [Google Scholar]
  15. Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
  16. Kugiyama K., Ohgushi M., Sugiyama S., Murohara T., Fukunaga K., Miyamoto E., Yasue H. Lysophosphatidylcholine inhibits surface receptor-mediated intracellular signals in endothelial cells by a pathway involving protein kinase C activation. Circ Res. 1992 Dec;71(6):1422–1428. doi: 10.1161/01.res.71.6.1422. [DOI] [PubMed] [Google Scholar]
  17. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kume N., Gimbrone M. A., Jr Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994 Feb;93(2):907–911. doi: 10.1172/JCI117047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
  20. McMurray H. F., Parthasarathy S., Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 1993 Aug;92(2):1004–1008. doi: 10.1172/JCI116605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
  22. Murohara T., Scalia R., Lefer A. M. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ Res. 1996 May;78(5):780–789. doi: 10.1161/01.res.78.5.780. [DOI] [PubMed] [Google Scholar]
  23. Ogita T., Tanaka Y., Nakaoka T., Matsuoka R., Kira Y., Nakamura M., Shimizu T., Fujita T. Lysophosphatidylcholine transduces Ca2+ signaling via the platelet-activating factor receptor in macrophages. Am J Physiol. 1997 Jan;272(1 Pt 2):H17–H24. doi: 10.1152/ajpheart.1997.272.1.H17. [DOI] [PubMed] [Google Scholar]
  24. Ohashi Y., Katayama M., Hirata K., Suematsu M., Kawashima S., Yokoyama M. Activation of nitric oxide synthase from cultured aortic endothelial cells by phospholipids. Biochem Biophys Res Commun. 1993 Sep 30;195(3):1314–1320. doi: 10.1006/bbrc.1993.2187. [DOI] [PubMed] [Google Scholar]
  25. Oishi K., Raynor R. L., Charp P. A., Kuo J. F. Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem. 1988 May 15;263(14):6865–6871. [PubMed] [Google Scholar]
  26. Okajima F., Kondo Y. Pertussis toxin inhibits phospholipase C activation and Ca2+ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J Biol Chem. 1995 Nov 3;270(44):26332–26340. doi: 10.1074/jbc.270.44.26332. [DOI] [PubMed] [Google Scholar]
  27. Okajima F., Sato K., Kondo Y. P2-purinergic agonists activate phospholipase C in a guanine nucleotide- and Ca2+-dependent manner in FRTL-5 thyroid cell membranes. FEBS Lett. 1989 Aug 14;253(1-2):132–136. doi: 10.1016/0014-5793(89)80945-7. [DOI] [PubMed] [Google Scholar]
  28. Okajima F., Sato K., Nazarea M., Sho K., Kondo Y. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. Cooperative mechanism of signal transduction systems. J Biol Chem. 1989 Aug 5;264(22):13029–13037. [PubMed] [Google Scholar]
  29. Okajima F., Sho K., Kondo Y. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells. Endocrinology. 1988 Aug;123(2):1035–1043. doi: 10.1210/endo-123-2-1035. [DOI] [PubMed] [Google Scholar]
  30. Okajima F., Tomura H., Sho K., Nochi H., Tamoto K., Kondo Y. Involvement of pertussis toxin-sensitive GTP-binding proteins in sphingosine 1-phosphate-induced activation of phospholipase C-Ca2+ system in HL60 leukemia cells. FEBS Lett. 1996 Feb 5;379(3):260–264. doi: 10.1016/0014-5793(95)01526-4. [DOI] [PubMed] [Google Scholar]
  31. Okita M., Gaudette D. C., Mills G. B., Holub B. J. Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int J Cancer. 1997 Mar 28;71(1):31–34. doi: 10.1002/(sici)1097-0215(19970328)71:1<31::aid-ijc7>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  32. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  34. Sakai M., Miyazaki A., Hakamata H., Kodama T., Suzuki H., Kobori S., Shichiri M., Horiuchi S. The scavenger receptor serves as a route for internalization of lysophosphatidylcholine in oxidized low density lipoprotein-induced macrophage proliferation. J Biol Chem. 1996 Nov 1;271(44):27346–27352. doi: 10.1074/jbc.271.44.27346. [DOI] [PubMed] [Google Scholar]
  35. Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., Horiuchi S. Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 1994 Dec 16;269(50):31430–31435. [PubMed] [Google Scholar]
  36. Sasaki Y., Asaoka Y., Nishizuka Y. Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. Subspecies difference. FEBS Lett. 1993 Mar 29;320(1):47–51. doi: 10.1016/0014-5793(93)81655-j. [DOI] [PubMed] [Google Scholar]
  37. Schackelford R. E., Misra U. K., Florine-Casteel K., Thai S. F., Pizzo S. V., Adams D. O. Oxidized low density lipoprotein suppresses activation of NF kappa B in macrophages via a pertussis toxin-sensitive signaling mechanism. J Biol Chem. 1995 Feb 24;270(8):3475–3478. doi: 10.1074/jbc.270.8.3475. [DOI] [PubMed] [Google Scholar]
  38. Spiegel S., Merrill A. H., Jr Sphingolipid metabolism and cell growth regulation. FASEB J. 1996 Oct;10(12):1388–1397. doi: 10.1096/fasebj.10.12.8903509. [DOI] [PubMed] [Google Scholar]
  39. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  40. Subbaiah P. V., Chen C. H., Bagdade J. D., Albers J. J. Substrate specificity of plasma lysolecithin acyltransferase and the molecular species of lecithin formed by the reaction. J Biol Chem. 1985 May 10;260(9):5308–5314. [PubMed] [Google Scholar]
  41. Sugiyama S., Kugiyama K., Ohgushi M., Fujimoto K., Yasue H. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ Res. 1994 Apr;74(4):565–575. doi: 10.1161/01.res.74.4.565. [DOI] [PubMed] [Google Scholar]
  42. Tensen C. P., Van Kesteren E. R., Planta R. J., Cox K. J., Burke J. F., van Heerikhuizen H., Vreugdenhil E. A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4816–4820. doi: 10.1073/pnas.91.11.4816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tobin A. B., Willars G. B., Burford N. T., Nahorski S. R. Relationship between agonist binding, phosphorylation and immunoprecipitation of the m3-muscarinic receptor, and second messenger responses. Br J Pharmacol. 1995 Sep;116(2):1723–1728. doi: 10.1111/j.1476-5381.1995.tb16654.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tokumura A., Iimori M., Nishioka Y., Kitahara M., Sakashita M., Tanaka S. Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am J Physiol. 1994 Jul;267(1 Pt 1):C204–C210. doi: 10.1152/ajpcell.1994.267.1.C204. [DOI] [PubMed] [Google Scholar]
  45. Tomura H., Okajima F., Kondo Y. Discrimination between two types of P2 purinoceptors by suramin in rat hepatocytes. Eur J Pharmacol. 1992 Aug 3;226(4):363–365. doi: 10.1016/0922-4106(92)90054-y. [DOI] [PubMed] [Google Scholar]
  46. Vadas P., Pruzanski W. Role of secretory phospholipases A2 in the pathobiology of disease. Lab Invest. 1986 Oct;55(4):391–404. [PubMed] [Google Scholar]
  47. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yuan Y., Jackson S. P., Newnham H. H., Mitchell C. A., Salem H. H. An essential role for lysophosphatidylcholine in the inhibition of platelet aggregation by secretory phospholipase A2. Blood. 1995 Dec 1;86(11):4166–4174. [PubMed] [Google Scholar]
  49. Yuan Y., Schoenwaelder S. M., Salem H. H., Jackson S. P. The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem. 1996 Oct 25;271(43):27090–27098. doi: 10.1074/jbc.271.43.27090. [DOI] [PubMed] [Google Scholar]
  50. Zembowicz A., Tang J. L., Wu K. K. Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine. J Biol Chem. 1995 Jul 14;270(28):17006–17010. doi: 10.1074/jbc.270.28.17006. [DOI] [PubMed] [Google Scholar]
  51. Zondag G. C., Postma F. R., Etten I. V., Verlaan I., Moolenaar W. H. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998 Mar 1;330(Pt 2):605–609. doi: 10.1042/bj3300605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. van Koppen C., Meyer zu Heringdorf M., Laser K. T., Zhang C., Jakobs K. H., Bünemann M., Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996 Jan 26;271(4):2082–2087. doi: 10.1074/jbc.271.4.2082. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES