Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 1;336(Pt 2):501–506. doi: 10.1042/bj3360501

Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A.

N Leducq 1, M C Delmas-Beauvieux 1, I Bourdel-Marchasson 1, S Dufour 1, J L Gallis 1, P Canioni 1, P Diolez 1
PMCID: PMC1219896  PMID: 9820829

Abstract

The purpose of this study was to test the hypothesis that mitochondrial permeability transition might be implicated in mitochondrial and intact organ dysfunctions associated with damage induced by reperfusion after cold ischaemia. Energetic metabolism was assessed continuously by 31P-NMR on a model system of isolated perfused rat liver; mitochondria were extracted from the livers and studied by using top-down control analysis. During the temperature transition from hypothermic to normothermic perfusion (from 4 to 37 degrees C) the ATP content of the perfused organ fell rapidly, and top-down metabolic control analysis of damaged mitochondria revealed a specific control pattern characterized by a dysfunction of the phosphorylation subsystem leading to a decreased response to cellular ATP demand. Both dysfunctions were fully prevented by cyclosporin A, a specific inhibitor of the mitochondrial transition pore (MTP). These results strongly suggest the involvement of the opening of MTP in vivo during the transition to normothermia on rat liver mitochondrial function and organ energetics.

Full Text

The Full Text of this article is available as a PDF (128.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belli L. S., De Carlis L., Del Favero E., Civati G., Brando B., Romani F., Aseni P., Rondinara G. F., Palmieri B., Meroni A. The role of donor and recipient factors in initial renal graft non-function. Transplant Proc. 1988 Oct;20(5):861–864. [PubMed] [Google Scholar]
  2. Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
  3. Borutaite V., Mildaziene V., Brown G. C., Brand M. D. Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochim Biophys Acta. 1995 Dec 12;1272(3):154–158. doi: 10.1016/0925-4439(95)00080-1. [DOI] [PubMed] [Google Scholar]
  4. Brand M. D., Chien L. F., Diolez P. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J. 1994 Jan 1;297(Pt 1):27–29. doi: 10.1042/bj2970027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand M. D., Harper M. E., Taylor H. C. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem J. 1993 May 1;291(Pt 3):739–748. doi: 10.1042/bj2910739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  7. Castillo-Olivares J. L., Gosalvez M., Azpeitia D., Romero E. G., Blanco M., Figuera D. Mitochondrial respiration and oxidative phosphorylation during hepatic preservation. J Surg Res. 1972 Aug;13(2):85–89. doi: 10.1016/0022-4804(72)90048-0. [DOI] [PubMed] [Google Scholar]
  8. Connern C. P., Halestrap A. P. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J. 1992 Jun 1;284(Pt 2):381–385. doi: 10.1042/bj2840381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delmas-Beauvieux M. C., Gallis J. L., Rousse N., Clerc M., Canioni P. Phosphorus-31 nuclear magnetic resonance of isolated rat liver during hypothermic ischemia and subsequent normothermic perfusion. J Hepatol. 1992 May;15(1-2):192–201. doi: 10.1016/0168-8278(92)90035-n. [DOI] [PubMed] [Google Scholar]
  10. Desmoulin F., Cozzone P. J., Canioni P. Phosphorus-31 nuclear-magnetic-resonance study of phosphorylated metabolites compartmentation, intracellular pH and phosphorylation state during normoxia, hypoxia and ethanol perfusion, in the perfused rat liver. Eur J Biochem. 1987 Jan 2;162(1):151–159. doi: 10.1111/j.1432-1033.1987.tb10555.x. [DOI] [PubMed] [Google Scholar]
  11. Diolez P., Kesseler A., Haraux F., Valerio M., Brinkmann K., Brand M. D. Regulation of oxidative phosphorylation in plant mitochondria. Biochem Soc Trans. 1993 Aug;21(3):769–773. doi: 10.1042/bst0210769. [DOI] [PubMed] [Google Scholar]
  12. Dufour S., Rousse N., Canioni P., Diolez P. Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J. 1996 Mar 15;314(Pt 3):743–751. doi: 10.1042/bj3140743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dufour S., Thiaudière E., Vidal G., Gallis J. L., Rousse N., Canioni P. Temperature dependence of NMR relaxation times of nucleoside triphosphates and inorganic phosphate in the isolated perfused rat liver. Effect on Pi compartmentation. J Magn Reson B. 1996 Nov;113(2):125–135. doi: 10.1006/jmrb.1996.0165. [DOI] [PubMed] [Google Scholar]
  14. Griffiths E. J., Halestrap A. P. Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J. 1991 Mar 1;274(Pt 2):611–614. doi: 10.1042/bj2740611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Griffiths E. J., Halestrap A. P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995 Apr 1;307(Pt 1):93–98. doi: 10.1042/bj3070093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Griffiths E. J., Halestrap A. P. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993 Dec;25(12):1461–1469. doi: 10.1006/jmcc.1993.1162. [DOI] [PubMed] [Google Scholar]
  17. Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
  18. Halestrap A. P., Griffiths E. J., Connern C. P. Mitochondrial calcium handling and oxidative stress. Biochem Soc Trans. 1993 May;21(2):353–358. doi: 10.1042/bst0210353. [DOI] [PubMed] [Google Scholar]
  19. Halestrap A. P., Woodfield K. Y., Connern C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997 Feb 7;272(6):3346–3354. doi: 10.1074/jbc.272.6.3346. [DOI] [PubMed] [Google Scholar]
  20. Kamiike W., Burdelski M., Steinhoff G., Ringe B., Lauchart W., Pichlmayr R. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation. 1988 Jan;45(1):138–143. doi: 10.1097/00007890-198801000-00030. [DOI] [PubMed] [Google Scholar]
  21. Kesseler A., Brand M. D. Effects of cadmium on the control and internal regulation of oxidative phosphorylation in potato tuber mitochondria. Eur J Biochem. 1994 Nov 1;225(3):907–922. doi: 10.1111/j.1432-1033.1994.0907b.x. [DOI] [PubMed] [Google Scholar]
  22. Kesseler A., Brand M. D. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Eur J Biochem. 1994 Nov 1;225(3):897–906. doi: 10.1111/j.1432-1033.1994.0897b.x. [DOI] [PubMed] [Google Scholar]
  23. Kesseler A., Brand M. D. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria. Eur J Biochem. 1994 Nov 1;225(3):923–935. doi: 10.1111/j.1432-1033.1994.0923b.x. [DOI] [PubMed] [Google Scholar]
  24. Kesseler A., Diolez P., Brinkmann K., Brand M. D. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. Eur J Biochem. 1992 Dec 15;210(3):775–784. doi: 10.1111/j.1432-1033.1992.tb17480.x. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi H., Nonami T., Kurokawa T., Sugiyama S., Ozawa T., Takagi H. Mechanism and prevention of ischemia-reperfusion-induced liver injury in rats. J Surg Res. 1991 Sep;51(3):240–244. doi: 10.1016/0022-4804(91)90101-q. [DOI] [PubMed] [Google Scholar]
  26. Kristián T., Siesjö B. K. Calcium-related damage in ischemia. Life Sci. 1996;59(5-6):357–367. doi: 10.1016/0024-3205(96)00314-1. [DOI] [PubMed] [Google Scholar]
  27. Lanir A., Clouse M. E., Lee R. G. Liver preservation for transplant. Evaluation of hepatic energy metabolism by 31P NMR. Transplantation. 1987 Jun;43(6):786–790. [PubMed] [Google Scholar]
  28. Marubayashi S., Takenaka M., Dohi K., Ezaki H., Kawasaki T. Adenine nucleotide metabolism during hepatic ischemia and subsequent blood reflow periods and its relation to organ viability. Transplantation. 1980 Oct;30(4):294–296. doi: 10.1097/00007890-198010000-00011. [DOI] [PubMed] [Google Scholar]
  29. Nicolli A., Basso E., Petronilli V., Wenger R. M., Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996 Jan 26;271(4):2185–2192. doi: 10.1074/jbc.271.4.2185. [DOI] [PubMed] [Google Scholar]
  30. Nicolli A., Petronilli V., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry. 1993 Apr 27;32(16):4461–4465. doi: 10.1021/bi00067a039. [DOI] [PubMed] [Google Scholar]
  31. Nicolli A., costantini P., Basso E., Colonna R., Petronilli V., Bernardi P. Potential role of cyclosporin A-sensitive mitochondrial channels in ischemia-reperfusion injury. Transplant Proc. 1995 Oct;27(5):2825–2826. [PubMed] [Google Scholar]
  32. Nishida T., Koseki M., Kamiike W., Nakahara M., Nakao K., Kawashima Y., Hashimoto T., Tagawa K. Levels of purine compounds in a perfusate as a biochemical marker of ischemic injury of cold-preserved liver. Transplantation. 1987 Jul;44(1):16–21. doi: 10.1097/00007890-198707000-00005. [DOI] [PubMed] [Google Scholar]
  33. Petit P. X., Susin S. A., Zamzami N., Mignotte B., Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett. 1996 Oct 28;396(1):7–13. doi: 10.1016/0014-5793(96)00988-x. [DOI] [PubMed] [Google Scholar]
  34. Petronilli V., Nicolli A., Costantini P., Colonna R., Bernardi P. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta. 1994 Aug 30;1187(2):255–259. doi: 10.1016/0005-2728(94)90122-8. [DOI] [PubMed] [Google Scholar]
  35. Rehácek Z. The cyclosporins. Folia Microbiol (Praha) 1995;40(1):68–88. doi: 10.1007/BF02816529. [DOI] [PubMed] [Google Scholar]
  36. Saris N. E., Eriksson K. O. Mitochondrial dysfunction in ischaemia-reperfusion. Acta Anaesthesiol Scand Suppl. 1995;107:171–176. doi: 10.1111/j.1399-6576.1995.tb04353.x. [DOI] [PubMed] [Google Scholar]
  37. Sasaki H., Matsuno T., Tanaka N., Orita K. Activation of apoptosis during the reperfusion phase after rat liver ischemia. Transplant Proc. 1996 Jun;28(3):1908–1909. [PubMed] [Google Scholar]
  38. Skulachev V. P. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett. 1996 Nov 11;397(1):7–10. doi: 10.1016/0014-5793(96)00989-1. [DOI] [PubMed] [Google Scholar]
  39. Szabó I., De Pinto V., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 1993 Sep 13;330(2):206–210. doi: 10.1016/0014-5793(93)80274-x. [DOI] [PubMed] [Google Scholar]
  40. Szabó I., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett. 1993 Sep 13;330(2):201–205. doi: 10.1016/0014-5793(93)80273-w. [DOI] [PubMed] [Google Scholar]
  41. Valerio M., Diolez P., Haraux F. Deactivation of F0F1 ATPase in intact plant mitochondria. Effect of pH and inhibitors. Eur J Biochem. 1994 May 1;221(3):1071–1078. doi: 10.1111/j.1432-1033.1994.tb18826.x. [DOI] [PubMed] [Google Scholar]
  42. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES