Abstract
Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development.
Full Text
The Full Text of this article is available as a PDF (190.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akbar G. K., Dasari V. R., Webb T. E., Ayyanathan K., Pillarisetti K., Sandhu A. K., Athwal R. S., Daniel J. L., Ashby B., Barnard E. A. Molecular cloning of a novel P2 purinoceptor from human erythroleukemia cells. J Biol Chem. 1996 Aug 2;271(31):18363–18367. doi: 10.1074/jbc.271.31.18363. [DOI] [PubMed] [Google Scholar]
- Akbar G. K., Mills D. C., Kunapuli S. P. Characterization of extracellular nucleotide-induced Mac-1 (alphaM beta2 integrin) surface expression on peripheral blood leukocytes. Biochem Biophys Res Commun. 1997 Apr 7;233(1):71–75. doi: 10.1006/bbrc.1997.6396. [DOI] [PubMed] [Google Scholar]
- Allen T. G., Burnstock G. The actions of adenosine 5'-triphosphate on guinea-pig intracardiac neurones in culture. Br J Pharmacol. 1990 Jun;100(2):269–276. doi: 10.1111/j.1476-5381.1990.tb15794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altieri D. C., Edgington T. S. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J Biol Chem. 1988 May 25;263(15):7007–7015. [PubMed] [Google Scholar]
- Altieri D. C., Mannucci P. M., Capitanio A. M. Binding of fibrinogen to human monocytes. J Clin Invest. 1986 Oct;78(4):968–976. doi: 10.1172/JCI112687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BORN G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962 Jun 9;194:927–929. doi: 10.1038/194927b0. [DOI] [PubMed] [Google Scholar]
- Barnard E. A., Simon J., Webb T. E. Nucleotide receptors in the nervous system. An abundant component using diverse transduction mechanisms. Mol Neurobiol. 1997 Oct;15(2):103–129. doi: 10.1007/BF02740631. [DOI] [PubMed] [Google Scholar]
- Bennett J. S., Chan C., Vilaire G., Mousa S. A., DeGrado W. F. Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. J Biol Chem. 1997 Mar 28;272(13):8137–8140. doi: 10.1074/jbc.272.13.8137. [DOI] [PubMed] [Google Scholar]
- Biffen M., Alexander D. R. Mobilization of intracellular Ca2+ by adenine nucleotides in human T-leukaemia cells: evidence for ADP-specific and P2y-purinergic receptors. Biochem J. 1994 Dec 15;304(Pt 3):769–774. doi: 10.1042/bj3040769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björnsson O. G., Monck J. R., Williamson J. R. Identification of P2Y purinoceptors associated with voltage-activated cation channels in cardiac ventricular myocytes of the rat. Eur J Biochem. 1989 Dec 8;186(1-2):395–404. doi: 10.1111/j.1432-1033.1989.tb15222.x. [DOI] [PubMed] [Google Scholar]
- Blanchard D. K., McMillen S., Djeu J. Y. IFN-gamma enhances sensitivity of human macrophages to extracellular ATP-mediated lysis. J Immunol. 1991 Oct 15;147(8):2579–2585. [PubMed] [Google Scholar]
- Blanchard D. K., Wei S., Duan C., Pericle F., Diaz J. I., Djeu J. Y. Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood. 1995 Jun 1;85(11):3173–3182. [PubMed] [Google Scholar]
- Bo X., Zhang Y., Nassar M., Burnstock G., Schoepfer R. A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett. 1995 Nov 13;375(1-2):129–133. doi: 10.1016/0014-5793(95)01203-q. [DOI] [PubMed] [Google Scholar]
- Boarder M. R., Hourani S. M. The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci. 1998 Mar;19(3):99–107. doi: 10.1016/s0165-6147(98)01170-5. [DOI] [PubMed] [Google Scholar]
- Boarder M. R., Weisman G. A., Turner J. T., Wilkinson G. F. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci. 1995 Apr;16(4):133–139. doi: 10.1016/s0165-6147(00)89001-x. [DOI] [PubMed] [Google Scholar]
- Boeynaems J. M., Galand N. Stimulation of vascular prostacyclin synthesis by extracellular ADP and ATP. Biochem Biophys Res Commun. 1983 Apr 15;112(1):290–296. doi: 10.1016/0006-291x(83)91829-6. [DOI] [PubMed] [Google Scholar]
- Boeynaems J. M., Pearson J. D. P2 purinoceptors on vascular endothelial cells: physiological significance and transduction mechanisms. Trends Pharmacol Sci. 1990 Jan;11(1):34–37. doi: 10.1016/0165-6147(90)90039-b. [DOI] [PubMed] [Google Scholar]
- Bogdanov Y. D., Dale L., King B. F., Whittock N., Burnstock G. Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem. 1997 May 9;272(19):12583–12590. doi: 10.1074/jbc.272.19.12583. [DOI] [PubMed] [Google Scholar]
- Bogdanov Y. D., Wildman S. S., Clements M. P., King B. F., Burnstock G. Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol. 1998 Jun;124(3):428–430. doi: 10.1038/sj.bjp.0701880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogdanov Y., Rubino A., Burnstock G. Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci. 1998;62(8):697–703. doi: 10.1016/s0024-3205(97)01168-5. [DOI] [PubMed] [Google Scholar]
- Boyer J. L., Lazarowski E. R., Chen X. H., Harden T. K. Identification of a P2Y-purinergic receptor that inhibits adenylyl cyclase. J Pharmacol Exp Ther. 1993 Dec;267(3):1140–1146. [PubMed] [Google Scholar]
- Boyer J. L., Romero-Avila T., Schachter J. B., Harden T. K. Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol. 1996 Nov;50(5):1323–1329. [PubMed] [Google Scholar]
- Boyer J. L., Waldo G. L., Harden T. K. Molecular cloning and expression of an avian G protein-coupled P2Y receptor. Mol Pharmacol. 1997 Dec;52(6):928–934. doi: 10.1124/mol.52.6.928. [DOI] [PubMed] [Google Scholar]
- Brake A. J., Wagenbach M. J., Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994 Oct 6;371(6497):519–523. doi: 10.1038/371519a0. [DOI] [PubMed] [Google Scholar]
- Brizzolara A. L., Crowe R., Burnstock G. Evidence for the involvement of both ATP and nitric oxide in non-adrenergic, non-cholinergic inhibitory neurotransmission in the rabbit portal vein. Br J Pharmacol. 1993 Jul;109(3):606–608. doi: 10.1111/j.1476-5381.1993.tb13614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown C. A., Patel V., Wilkinson G., Boarder M. R. P2 purinoceptor-stimulated conversion of arginine to citrulline in bovine endothelial cells is reduced by inhibition of protein kinase C. Biochem Pharmacol. 1996 Dec 24;52(12):1849–1854. doi: 10.1016/s0006-2952(96)00550-3. [DOI] [PubMed] [Google Scholar]
- Burnstock G. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology. 1997 Sep;36(9):1127–1139. doi: 10.1016/s0028-3908(97)00125-1. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Vascular control by purines with emphasis on the coronary system. Eur Heart J. 1989 Nov;10 (Suppl F):15–21. doi: 10.1093/eurheartj/10.suppl_f.15. [DOI] [PubMed] [Google Scholar]
- Busse R., Mülsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990 Nov 26;275(1-2):87–90. doi: 10.1016/0014-5793(90)81445-t. [DOI] [PubMed] [Google Scholar]
- Carter T. D., Hallam T. J., Cusack N. J., Pearson J. D. Regulation of P2y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol. 1988 Dec;95(4):1181–1190. doi: 10.1111/j.1476-5381.1988.tb11754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter T. D., Hallam T. J., Pearson J. D. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca2+. Biochem J. 1989 Sep 1;262(2):431–437. doi: 10.1042/bj2620431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattaneo M., Lecchi A., Randi A. M., McGregor J. L., Mannucci P. M. Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood. 1992 Dec 1;80(11):2787–2796. [PubMed] [Google Scholar]
- Chang K., Hanaoka K., Kumada M., Takuwa Y. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem. 1995 Nov 3;270(44):26152–26158. doi: 10.1074/jbc.270.44.26152. [DOI] [PubMed] [Google Scholar]
- Chang K., Hanaoka K., Kumada M., Takuwa Y. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem. 1995 Nov 3;270(44):26152–26158. doi: 10.1074/jbc.270.44.26152. [DOI] [PubMed] [Google Scholar]
- Charlton S. J., Brown C. A., Weisman G. A., Turner J. T., Erb L., Boarder M. R. PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors. Br J Pharmacol. 1996 Jun;118(3):704–710. doi: 10.1111/j.1476-5381.1996.tb15457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. C., Akopian A. N., Sivilotti L., Colquhoun D., Burnstock G., Wood J. N. A P2X purinoceptor expressed by a subset of sensory neurons. Nature. 1995 Oct 5;377(6548):428–431. doi: 10.1038/377428a0. [DOI] [PubMed] [Google Scholar]
- Chen Z. P., Krull N., Xu S., Levy A., Lightman S. L. Molecular cloning and functional characterization of a rat pituitary G protein-coupled adenosine triphosphate (ATP) receptor. Endocrinology. 1996 May;137(5):1833–1840. doi: 10.1210/endo.137.5.8612522. [DOI] [PubMed] [Google Scholar]
- Chessell I. P., Michel A. D., Humphrey P. P. Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol. 1998 Jul;124(6):1314–1320. doi: 10.1038/sj.bjp.0701958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christie A., Sharma V. K., Sheu S. S. Mechanism of extracellular ATP-induced increase of cytosolic Ca2+ concentration in isolated rat ventricular myocytes. J Physiol. 1992 Jan;445:369–388. doi: 10.1113/jphysiol.1992.sp018929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockcroft S., Gomperts B. D. ATP induces nucleotide permeability in rat mast cells. Nature. 1979 Jun 7;279(5713):541–542. doi: 10.1038/279541a0. [DOI] [PubMed] [Google Scholar]
- Cockcroft S., Gomperts B. D. The ATP4- receptor of rat mast cells. Biochem J. 1980 Jun 15;188(3):789–798. doi: 10.1042/bj1880789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockcroft S., Stutchfield J. ATP stimulates secretion in human neutrophils and HL60 cells via a pertussis toxin-sensitive guanine nucleotide-binding protein coupled to phospholipase C. FEBS Lett. 1989 Mar 13;245(1-2):25–29. doi: 10.1016/0014-5793(89)80184-x. [DOI] [PubMed] [Google Scholar]
- Collo G., North R. A., Kawashima E., Merlo-Pich E., Neidhart S., Surprenant A., Buell G. Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci. 1996 Apr 15;16(8):2495–2507. doi: 10.1523/JNEUROSCI.16-08-02495.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Communi D., Govaerts C., Parmentier M., Boeynaems J. M. Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem. 1997 Dec 19;272(51):31969–31973. doi: 10.1074/jbc.272.51.31969. [DOI] [PubMed] [Google Scholar]
- Communi D., Parmentier M., Boeynaems J. M. Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun. 1996 May 15;222(2):303–308. doi: 10.1006/bbrc.1996.0739. [DOI] [PubMed] [Google Scholar]
- Communi D., Pirotton S., Parmentier M., Boeynaems J. M. Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem. 1995 Dec 29;270(52):30849–30852. doi: 10.1074/jbc.270.52.30849. [DOI] [PubMed] [Google Scholar]
- Communi D., Pirotton S., Parmentier M., Boeynaems J. M. Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem. 1995 Dec 29;270(52):30849–30852. doi: 10.1074/jbc.270.52.30849. [DOI] [PubMed] [Google Scholar]
- Conigrave A. D., Lee J. Y., van der Weyden L., Jiang L., Ward P., Tasevski V., Luttrell B. M., Morris M. B. Pharmacological profile of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 leukemia cells. Br J Pharmacol. 1998 Aug;124(7):1580–1585. doi: 10.1038/sj.bjp.0701985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowen D. S., Lazarus H. M., Shurin S. B., Stoll S. E., Dubyak G. R. Extracellular adenosine triphosphate activates calcium mobilization in human phagocytic leukocytes and neutrophil/monocyte progenitor cells. J Clin Invest. 1989 May;83(5):1651–1660. doi: 10.1172/JCI114064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cusack N. J., Hourani S. M. Adenosine 5-diphosphate antagonists and human platelets: no evidence that aggregation and inhibition of stimulated adenylate cyclase are mediated by different receptors. Br J Pharmacol. 1982 May;76(1):221–227. doi: 10.1111/j.1476-5381.1982.tb09210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel J. L., Dangelmaier C., Jin J., Ashby B., Smith J. B., Kunapuli S. P. Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP receptors on human platelets. J Biol Chem. 1998 Jan 23;273(4):2024–2029. doi: 10.1074/jbc.273.4.2024. [DOI] [PubMed] [Google Scholar]
- Danziger R. S., Raffaeli S., Moreno-Sanchez R., Sakai M., Capogrossi M. C., Spurgeon H. A., Hansford R. G., Lakatta E. G. Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes. Cell Calcium. 1988 Aug;9(4):193–199. doi: 10.1016/0143-4160(88)90023-1. [DOI] [PubMed] [Google Scholar]
- Dawicki D. D., McGowan-Jordan J., Bullard S., Pond S., Rounds S. Extracellular nucleotides stimulate leukocyte adherence to cultured pulmonary artery endothelial cells. Am J Physiol. 1995 Apr;268(4 Pt 1):L666–L673. doi: 10.1152/ajplung.1995.268.4.L666. [DOI] [PubMed] [Google Scholar]
- De Young M. B., Scarpa A. ATP receptor-induced Ca2+ transients in cardiac myocytes: sources of mobilized Ca2+. Am J Physiol. 1989 Oct;257(4 Pt 1):C750–C758. doi: 10.1152/ajpcell.1989.257.4.C750. [DOI] [PubMed] [Google Scholar]
- De Young M. B., Scarpa A. Extracellular ATP induces Ca2+ transients in cardiac myocytes which are potentiated by norepinephrine. FEBS Lett. 1987 Oct 19;223(1):53–58. doi: 10.1016/0014-5793(87)80508-2. [DOI] [PubMed] [Google Scholar]
- Defreyn G., Gachet C., Savi P., Driot F., Cazenave J. P., Maffrand J. P. Ticlopidine and clopidogrel (SR 25990C) selectively neutralize ADP inhibition of PGE1-activated platelet adenylate cyclase in rats and rabbits. Thromb Haemost. 1991 Feb 12;65(2):186–190. [PubMed] [Google Scholar]
- Dubyak G. R., Cowen D. S., Lazarus H. M. Activation of the inositol phospholipid signaling system by receptors for extracellular ATP in human neutrophils, monocytes, and neutrophil/monocyte progenitor cells. Ann N Y Acad Sci. 1988;551:218–238. doi: 10.1111/j.1749-6632.1988.tb22339.x. [DOI] [PubMed] [Google Scholar]
- Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
- Erb L., Garrad R., Wang Y., Quinn T., Turner J. T., Weisman G. A. Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem. 1995 Mar 3;270(9):4185–4188. doi: 10.1074/jbc.270.9.4185. [DOI] [PubMed] [Google Scholar]
- Erlinge D. Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol. 1998 Jul;31(1):1–8. doi: 10.1016/s0306-3623(97)00420-5. [DOI] [PubMed] [Google Scholar]
- Fagura M. S., Dainty I. A., McKay G. D., Kirk I. P., Humphries R. G., Robertson M. J., Dougall I. G., Leff P. P2Y1-receptors in human platelets which are pharmacologically distinct from P2Y(ADP)-receptors. Br J Pharmacol. 1998 May;124(1):157–164. doi: 10.1038/sj.bjp.0701827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feolde E., Vigne P., Breittmayer J. P., Frelin C. ATP, a partial agonist of atypical P2Y purinoceptors in rat brain microvascular endothelial cells. Br J Pharmacol. 1995 Aug;115(7):1199–1203. doi: 10.1111/j.1476-5381.1995.tb15025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filtz T. M., Li Q., Boyer J. L., Nicholas R. A., Harden T. K. Expression of a cloned P2Y purinergic receptor that couples to phospholipase C. Mol Pharmacol. 1994 Jul;46(1):8–14. [PubMed] [Google Scholar]
- Fiske C. H. The Nature of the Depressor Substance of the Blood. Proc Natl Acad Sci U S A. 1934 Jan;20(1):25–27. doi: 10.1073/pnas.20.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ford-Hutchinson A. W. Regulation of leukotriene biosynthesis. Cancer Metastasis Rev. 1994 Dec;13(3-4):257–267. doi: 10.1007/BF00666096. [DOI] [PubMed] [Google Scholar]
- Fredholm B. B., Abbracchio M. P., Burnstock G., Daly J. W., Harden T. K., Jacobson K. A., Leff P., Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994 Jun;46(2):143–156. [PMC free article] [PubMed] [Google Scholar]
- Fredholm B. B., Abbracchio M. P., Burnstock G., Dubyak G. R., Harden T. K., Jacobson K. A., Schwabe U., Williams M. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci. 1997 Mar;18(3):79–82. doi: 10.1016/s0165-6147(96)01038-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frelin C., Breittmayer J. P., Vigne P. ADP induces inositol phosphate-independent intracellular Ca2+ mobilization in brain capillary endothelial cells. J Biol Chem. 1993 Apr 25;268(12):8787–8792. [PubMed] [Google Scholar]
- GAARDER A., JONSEN J., LALAND S., HELLEM A., OWREN P. A. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature. 1961 Nov 11;192:531–532. doi: 10.1038/192531a0. [DOI] [PubMed] [Google Scholar]
- Gachet C., Hechler B., Léon C., Vial C., Leray C., Ohlmann P., Cazenave J. P. Activation of ADP receptors and platelet function. Thromb Haemost. 1997 Jul;78(1):271–275. [PubMed] [Google Scholar]
- Garcia-Guzman M., Soto F., Gomez-Hernandez J. M., Lund P. E., Stühmer W. Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol. 1997 Jan;51(1):109–118. doi: 10.1124/mol.51.1.109. [DOI] [PubMed] [Google Scholar]
- Garcia-Guzman M., Soto F., Laube B., Stühmer W. Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett. 1996 Jun 17;388(2-3):123–127. doi: 10.1016/0014-5793(96)00499-1. [DOI] [PubMed] [Google Scholar]
- Garcia-Guzman M., Stühmer W., Soto F. Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Brain Res Mol Brain Res. 1997 Jul;47(1-2):59–66. doi: 10.1016/s0169-328x(97)00036-3. [DOI] [PubMed] [Google Scholar]
- Gargett C. E., Cornish E. J., Wiley J. S. Phospholipase D activation by P2Z-purinoceptor agonists in human lymphocytes is dependent on bivalent cation influx. Biochem J. 1996 Jan 15;313(Pt 2):529–535. doi: 10.1042/bj3130529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger J., Hönig-Liedl P., Schanzenbächer P., Walter U. Ligand specificity and ticlopidine effects distinguish three human platelet ADP receptors. Eur J Pharmacol. 1998 Jun 19;351(2):235–246. doi: 10.1016/s0014-2999(98)00305-7. [DOI] [PubMed] [Google Scholar]
- Giannattasio B., Powers K., Scarpa A. Characterization of myocardial extracellular ATP receptors by photoaffinity labelling and functional assays. FEBS Lett. 1992 Aug 24;308(3):327–331. doi: 10.1016/0014-5793(92)81305-6. [DOI] [PubMed] [Google Scholar]
- Goetz U., Da Prada M., Pletscher A. Adenine-, guanine- and uridine-5'-phosphonucleotides in blood platelets and storage organelles of various species. J Pharmacol Exp Ther. 1971 Jul;178(1):210–215. [PubMed] [Google Scholar]
- Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guibert C., Loirand G., Vigne P., Savineau J. P., Pacaud P. Dependence of P2-nucleotide receptor agonist-mediated endothelium-independent relaxation on ectonucleotidase activity and A2A-receptors in rat portal vein. Br J Pharmacol. 1998 Apr;123(8):1732–1740. doi: 10.1038/sj.bjp.0701773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harden T. K., Boyer J. L., Nicholas R. A. P2-purinergic receptors: subtype-associated signaling responses and structure. Annu Rev Pharmacol Toxicol. 1995;35:541–579. doi: 10.1146/annurev.pa.35.040195.002545. [DOI] [PubMed] [Google Scholar]
- Harden T. K., Lazarowski E. R., Boucher R. C. Release, metabolism and interconversion of adenine and uridine nucleotides: implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci. 1997 Feb;18(2):43–46. [PubMed] [Google Scholar]
- Harper S., Webb T. E., Charlton S. J., Ng L. L., Boarder M. R. Evidence that P2Y4 nucleotide receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br J Pharmacol. 1998 Jun;124(4):703–710. doi: 10.1038/sj.bjp.0701895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hechler B., Léon C., Vial C., Vigne P., Frelin C., Cazenave J. P., Gachet C. The P2Y1 receptor is necessary for adenosine 5'-diphosphate-induced platelet aggregation. Blood. 1998 Jul 1;92(1):152–159. [PubMed] [Google Scholar]
- Hechler B., Vigne P., Léon C., Breittmayer J. P., Gachet C., Frelin C. ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol Pharmacol. 1998 Apr;53(4):727–733. [PubMed] [Google Scholar]
- Henderson D. J., Elliot D. G., Smith G. M., Webb T. E., Dainty I. A. Cloning and characterisation of a bovine P2Y receptor. Biochem Biophys Res Commun. 1995 Jul 17;212(2):648–656. doi: 10.1006/bbrc.1995.2018. [DOI] [PubMed] [Google Scholar]
- Henderson D. J., Elliot D. G., Smith G. M., Webb T. E., Dainty I. A. Cloning and characterisation of a bovine P2Y receptor. Biochem Biophys Res Commun. 1995 Jul 17;212(2):648–656. doi: 10.1006/bbrc.1995.2018. [DOI] [PubMed] [Google Scholar]
- Henriksson T. Inhibition of natural killing by adenosine ribonucleotides. Immunol Lett. 1983;7(3):171–176. doi: 10.1016/0165-2478(83)90066-4. [DOI] [PubMed] [Google Scholar]
- Hirata K., Kuroda R., Sakoda T., Katayama M., Inoue N., Suematsu M., Kawashima S., Yokoyama M. Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension. 1995 Feb;25(2):180–185. doi: 10.1161/01.hyp.25.2.180. [DOI] [PubMed] [Google Scholar]
- Hourani S. M., Cusack N. J. Pharmacological receptors on blood platelets. Pharmacol Rev. 1991 Sep;43(3):243–298. [PubMed] [Google Scholar]
- Hourani S. M., Hall D. A. Receptors for ADP on human blood platelets. Trends Pharmacol Sci. 1994 Apr;15(4):103–108. doi: 10.1016/0165-6147(94)90045-0. [DOI] [PubMed] [Google Scholar]
- Humphries R. G., Robertson M. J., Leff P. A novel series of P2T purinoceptor antagonists: definition of the role of ADP in arterial thrombosis. Trends Pharmacol Sci. 1995 Jun;16(6):179–181. doi: 10.1016/s0165-6147(00)89018-5. [DOI] [PubMed] [Google Scholar]
- Jamieson G. P., Snook M. B., Thurlow P. J., Wiley J. S. Extracellular ATP causes of loss of L-selectin from human lymphocytes via occupancy of P2Z purinocepters. J Cell Physiol. 1996 Mar;166(3):637–642. doi: 10.1002/(SICI)1097-4652(199603)166:3<637::AID-JCP19>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Janssens R., Boeynaems J. M., Godart M., Communi D. Cloning of a human heptahelical receptor closely related to the P2Y5 receptor. Biochem Biophys Res Commun. 1997 Jul 9;236(1):106–112. doi: 10.1006/bbrc.1997.6895. [DOI] [PubMed] [Google Scholar]
- Janssens R., Communi D., Pirotton S., Samson M., Parmentier M., Boeynaems J. M. Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun. 1996 Apr 25;221(3):588–593. doi: 10.1006/bbrc.1996.0640. [DOI] [PubMed] [Google Scholar]
- Jin J., Daniel J. L., Kunapuli S. P. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem. 1998 Jan 23;273(4):2030–2034. doi: 10.1074/jbc.273.4.2030. [DOI] [PubMed] [Google Scholar]
- Jin J., Dasari V. R., Sistare F. D., Kunapuli S. P. Distribution of P2Y receptor subtypes on haematopoietic cells. Br J Pharmacol. 1998 Mar;123(5):789–794. doi: 10.1038/sj.bjp.0701665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jin J., Kunapuli S. P. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8070–8074. doi: 10.1073/pnas.95.14.8070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan K. L., Broekman M. J., Chernoff A., Lesznik G. R., Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood. 1979 Apr;53(4):604–618. [PubMed] [Google Scholar]
- Kelm M., Feelisch M., Spahr R., Piper H. M., Noack E., Schrader J. Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun. 1988 Jul 15;154(1):236–244. doi: 10.1016/0006-291x(88)90675-4. [DOI] [PubMed] [Google Scholar]
- Kunapuli S. P. Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends Pharmacol Sci. 1998 Oct;19(10):391–394. doi: 10.1016/s0165-6147(98)01248-6. [DOI] [PubMed] [Google Scholar]
- Legssyer A., Poggioli J., Renard D., Vassort G. ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol. 1988 Jul;401:185–199. doi: 10.1113/jphysiol.1988.sp017157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis C. J., Surprenant A., Evans R. J. 2',3'-O-(2,4,6- trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP)--a nanomolar affinity antagonist at rat mesenteric artery P2X receptor ion channels. Br J Pharmacol. 1998 Aug;124(7):1463–1466. doi: 10.1038/sj.bjp.0702001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis C., Neidhart S., Holy C., North R. A., Buell G., Surprenant A. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature. 1995 Oct 5;377(6548):432–435. doi: 10.1038/377432a0. [DOI] [PubMed] [Google Scholar]
- Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Léon C., Hechler B., Vial C., Leray C., Cazenave J. P., Gachet C. The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett. 1997 Feb 10;403(1):26–30. doi: 10.1016/s0014-5793(97)00022-7. [DOI] [PubMed] [Google Scholar]
- Léon C., Hechler B., Vial C., Leray C., Cazenave J. P., Gachet C. The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett. 1997 Feb 10;403(1):26–30. doi: 10.1016/s0014-5793(97)00022-7. [DOI] [PubMed] [Google Scholar]
- Léon C., Vial C., Cazenave J. P., Gachet C. Cloning and sequencing of a human cDNA encoding endothelial P2Y1 purinoceptor. Gene. 1996 Jun 1;171(2):295–297. doi: 10.1016/0378-1119(96)00027-3. [DOI] [PubMed] [Google Scholar]
- MacKenzie A. B., Mahaut-Smith M. P., Sage S. O. Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem. 1996 Feb 9;271(6):2879–2881. doi: 10.1074/jbc.271.6.2879. [DOI] [PubMed] [Google Scholar]
- Macfarlane D. E., Mills D. C. The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood. 1975 Sep;46(3):309–320. [PubMed] [Google Scholar]
- Mantelli L., Amerini S., Filippi S., Ledda F. Blockade of adenosine receptors unmasks a stimulatory effect of ATP on cardiac contractility. Br J Pharmacol. 1993 Aug;109(4):1268–1271. doi: 10.1111/j.1476-5381.1993.tb13759.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mateo J., Miras-Portugal M. T., Castro E. Co-existence of P2Y-and PPADS-insensitive P2U-purinoceptors in endothelial cells from adrenal medulla. Br J Pharmacol. 1996 Nov;119(6):1223–1232. doi: 10.1111/j.1476-5381.1996.tb16026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills D. C. ADP receptors on platelets. Thromb Haemost. 1996 Dec;76(6):835–856. [PubMed] [Google Scholar]
- Mills D. C., Robb I. A., Roberts G. C. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol. 1968 Apr;195(3):715–729. doi: 10.1113/jphysiol.1968.sp008484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyagi Y., Kobayashi S., Nishimura J., Fukui M., Kanaide H. Dual regulation of cerebrovascular tone by UTP: P2U receptor-mediated contraction and endothelium-dependent relaxation. Br J Pharmacol. 1996 Jun;118(4):847–856. doi: 10.1111/j.1476-5381.1996.tb15477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motte S., Pirotton S., Boeynaems J. M. Heterogeneity of ATP receptors in aortic endothelial cells. Involvement of P2y and P2u receptors in inositol phosphate response. Circ Res. 1993 Mar;72(3):504–510. doi: 10.1161/01.res.72.3.504. [DOI] [PubMed] [Google Scholar]
- Murthy K. S., Makhlouf G. M. Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem. 1998 Feb 20;273(8):4695–4704. doi: 10.1074/jbc.273.8.4695. [DOI] [PubMed] [Google Scholar]
- Nguyen T., Erb L., Weisman G. A., Marchese A., Heng H. H., Garrad R. C., George S. R., Turner J. T., O'Dowd B. F. Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem. 1995 Dec 29;270(52):30845–30848. doi: 10.1074/jbc.270.52.30845. [DOI] [PubMed] [Google Scholar]
- Nori S., Fumagalli L., Bo X., Bogdanov Y., Burnstock G. Coexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J Vasc Res. 1998 May-Jun;35(3):179–185. doi: 10.1159/000025582. [DOI] [PubMed] [Google Scholar]
- Nurden P., Savi P., Heilmann E., Bihour C., Herbert J. M., Maffrand J. P., Nurden A. An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb-IIIa complex function. J Clin Invest. 1995 Apr;95(4):1612–1622. doi: 10.1172/JCI117835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offermanns S., Toombs C. F., Hu Y. H., Simon M. I. Defective platelet activation in G alpha(q)-deficient mice. Nature. 1997 Sep 11;389(6647):183–186. doi: 10.1038/38284. [DOI] [PubMed] [Google Scholar]
- Orre M., Pennefather J. N., Story M. E., Haynes J. M. The effects of P2 purinoceptor agonists on the isolated portal vein of the guinea pig. Eur J Pharmacol. 1996 Dec 5;316(2-3):229–236. doi: 10.1016/s0014-2999(96)00687-5. [DOI] [PubMed] [Google Scholar]
- Pacaud P., Malam-Souley R., Loirand G., Desgranges C. ATP raises [Ca2+]i via different P2-receptor subtypes in freshly isolated and cultured aortic myocytes. Am J Physiol. 1995 Jul;269(1 Pt 2):H30–H36. doi: 10.1152/ajpheart.1995.269.1.H30. [DOI] [PubMed] [Google Scholar]
- Packham M. A., Bryant N. L., Guccione M. A., Kinlough-Rathbone R. L., Mustard J. F. Effect of the concentration of Ca2+ in the suspending medium on the responses of human and rabbit platelets to aggregating agents. Thromb Haemost. 1989 Nov 24;62(3):968–976. [PubMed] [Google Scholar]
- Parr C. E., Sullivan D. M., Paradiso A. M., Lazarowski E. R., Burch L. H., Olsen J. C., Erb L., Weisman G. A., Boucher R. C., Turner J. T. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3275–3279. doi: 10.1073/pnas.91.8.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel V., Brown C., Boarder M. R. Protein kinase C isoforms in bovine aortic endothelial cells: role in regulation of P2Y- and P2U-purinoceptor-stimulated prostacyclin release. Br J Pharmacol. 1996 May;118(1):123–130. doi: 10.1111/j.1476-5381.1996.tb15374.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel V., Brown C., Goodwin A., Wilkie N., Boarder M. R. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production. Biochem J. 1996 Nov 15;320(Pt 1):221–226. doi: 10.1042/bj3200221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson J. D., Slakey L. L., Gordon J. L. Stimulation of prostaglandin production through purinoceptors on cultured porcine endothelial cells. Biochem J. 1983 Jul 15;214(1):273–276. doi: 10.1042/bj2140273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pengo V., Boschello M., Marzari A., Baca M., Schivazappa L., Dalla Volta S. Adenosine diphosphate (ADP)-induced alpha-granules release from platelets of native whole blood is reduced by ticlopidine but not by aspirin or dipyridamole. Thromb Haemost. 1986 Oct 21;56(2):147–150. [PubMed] [Google Scholar]
- Pfeilschifter J., Thüring B., Festa F. Extracellular ATP stimulates poly(inositol phospholipid) hydrolysis and eicosanoid synthesis in mouse peritoneal macrophages in culture. Eur J Biochem. 1989 Dec 22;186(3):509–513. doi: 10.1111/j.1432-1033.1989.tb15236.x. [DOI] [PubMed] [Google Scholar]
- Pianet I., Merle M., Labouesse J. ADP and, indirectly, ATP are potent inhibitors of cAMP production in intact isoproterenol-stimulated C6 glioma cells. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1150–1157. doi: 10.1016/0006-291x(89)92341-3. [DOI] [PubMed] [Google Scholar]
- Pirotton S., Communi D., Motte S., Janssens R., Boeynaems J. M. Endothelial P2-purinoceptors: subtypes and signal transduction. J Auton Pharmacol. 1996 Dec;16(6):353–356. doi: 10.1111/j.1474-8673.1996.tb00052.x. [DOI] [PubMed] [Google Scholar]
- Pirotton S., Raspe E., Demolle D., Erneux C., Boeynaems J. M. Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J Biol Chem. 1987 Dec 25;262(36):17461–17466. [PubMed] [Google Scholar]
- Purkiss J. R., Wilkinson G. F., Boarder M. R. Evidence for a nucleotide receptor on adrenal medullary endothelial cells linked to phospholipase C and phospholipase D. Br J Pharmacol. 1993 Apr;108(4):1031–1037. doi: 10.1111/j.1476-5381.1993.tb13501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qu Y., Himmel H. M., Campbell D. L., Strauss H. C. Effects of extracellular ATP on ICa, [Ca2+]i, and contraction in isolated ferret ventricular myocytes. Am J Physiol. 1993 Mar;264(3 Pt 1):C702–C708. doi: 10.1152/ajpcell.1993.264.3.C702. [DOI] [PubMed] [Google Scholar]
- Rand M. L., Perry D. W., Packham M. A., Gemmell C. H., Yeo E. L., Kinlough-Rathbone R. L. Conditions influencing release of granule contents from human platelets in citrated plasma induced by ADP or the thrombin receptor activating peptide SFLLRN: direct measurement of percent release of beta-thromboglobulin and assessment by flow cytometry of P-selectin expression. Am J Hematol. 1996 Aug;52(4):288–294. doi: 10.1002/(SICI)1096-8652(199608)52:4<288::AID-AJH8>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Rao A. K., Koike K., Willis J., Daniel J. L., Beckett C., Hassel B., Day H. J., Smith J. B., Holmsen H. Platelet secretion defect associated with impaired liberation of arachidonic acid and normal myosin light chain phosphorylation. Blood. 1984 Oct;64(4):914–921. [PubMed] [Google Scholar]
- Rassendren F., Buell G. N., Virginio C., Collo G., North R. A., Surprenant A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem. 1997 Feb 28;272(9):5482–5486. doi: 10.1074/jbc.272.9.5482. [DOI] [PubMed] [Google Scholar]
- Rice W. R., Burton F. M., Fiedeldey D. T. Cloning and expression of the alveolar type II cell P2u-purinergic receptor. Am J Respir Cell Mol Biol. 1995 Jan;12(1):27–32. doi: 10.1165/ajrcmb.12.1.7811468. [DOI] [PubMed] [Google Scholar]
- Rinder C. S., Student L. A., Bonan J. L., Rinder H. M., Smith B. R. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha-granule release. Blood. 1993 Jul 15;82(2):505–512. [PubMed] [Google Scholar]
- Rubino A., Amerini S., Ledda F., Mantelli L. ATP modulates the efferent function of capsaicin-sensitive neurones in guinea-pig isolated atria. Br J Pharmacol. 1992 Mar;105(3):516–520. doi: 10.1111/j.1476-5381.1992.tb09011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubino A., Burnstock G. Evidence for a P2-purinoceptor mediating vasoconstriction by UTP, ATP and related nucleotides in the isolated pulmonary vascular bed of the rat. Br J Pharmacol. 1996 Jul;118(6):1415–1420. doi: 10.1111/j.1476-5381.1996.tb15554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto H., Firkin F. Characterization of leucocyte phagocytic stimulatory material released by activated human platelets. Br J Haematol. 1984 May;57(1):49–60. doi: 10.1111/j.1365-2141.1984.tb02864.x. [DOI] [PubMed] [Google Scholar]
- Savi P., Beauverger P., Labouret C., Delfaud M., Salel V., Kaghad M., Herbert J. M. Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett. 1998 Feb 6;422(3):291–295. doi: 10.1016/s0014-5793(98)00025-8. [DOI] [PubMed] [Google Scholar]
- Savi P., Bornia J., Salel V., Delfaud M., Herbert J. M. Characterization of P2x1 purinoreceptors on rat platelets: effect of clopidogrel. Br J Haematol. 1997 Sep;98(4):880–886. doi: 10.1046/j.1365-2141.1997.3133126.x. [DOI] [PubMed] [Google Scholar]
- Scamps F., Legssyer A., Mayoux E., Vassort G. The mechanism of positive inotropy induced by adenosine triphosphate in rat heart. Circ Res. 1990 Oct;67(4):1007–1016. doi: 10.1161/01.res.67.4.1007. [DOI] [PubMed] [Google Scholar]
- Scamps F., Rybin V., Puceat M., Tkachuk V., Vassort G. A Gs protein couples P2-purinergic stimulation to cardiac Ca channels without cyclic AMP production. J Gen Physiol. 1992 Oct;100(4):675–701. doi: 10.1085/jgp.100.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scamps F., Vassort G. Mechanism of extracellular ATP-induced depolarization in rat isolated ventricular cardiomyocytes. Pflugers Arch. 1990 Nov;417(3):309–316. doi: 10.1007/BF00370997. [DOI] [PubMed] [Google Scholar]
- Scamps F., Vassort G. Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells. Br J Pharmacol. 1994 Nov;113(3):982–986. doi: 10.1111/j.1476-5381.1994.tb17089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachter J. B., Li Q., Boyer J. L., Nicholas R. A., Harden T. K. Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol. 1996 May;118(1):167–173. doi: 10.1111/j.1476-5381.1996.tb15381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt A., Ortaldo J. R., Herberman R. B. Inhibition of human natural killer cell reactivity by exogenous adenosine 5'-triphosphate. J Immunol. 1984 Jan;132(1):146–150. [PubMed] [Google Scholar]
- Sun B., Li J., Okahara K., Kambayashi J. P2X1 purinoceptor in human platelets. Molecular cloning and functional characterization after heterologous expression. J Biol Chem. 1998 May 8;273(19):11544–11547. doi: 10.1074/jbc.273.19.11544. [DOI] [PubMed] [Google Scholar]
- Surprenant A., Rassendren F., Kawashima E., North R. A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996 May 3;272(5262):735–738. doi: 10.1126/science.272.5262.735. [DOI] [PubMed] [Google Scholar]
- Séguéla P., Haghighi A., Soghomonian J. J., Cooper E. A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci. 1996 Jan 15;16(2):448–455. doi: 10.1523/JNEUROSCI.16-02-00448.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuyama Y., Hara M., Jones E. M., Fan Z., Bell G. I. Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun. 1995 Jun 6;211(1):211–218. doi: 10.1006/bbrc.1995.1798. [DOI] [PubMed] [Google Scholar]
- Valera S., Hussy N., Evans R. J., Adami N., North R. A., Surprenant A., Buell G. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature. 1994 Oct 6;371(6497):516–519. doi: 10.1038/371516a0. [DOI] [PubMed] [Google Scholar]
- Valera S., Talabot F., Evans R. J., Gos A., Antonarakis S. E., Morris M. A., Buell G. N. Characterization and chromosomal localization of a human P2X receptor from the urinary bladder. Receptors Channels. 1995;3(4):283–289. [PubMed] [Google Scholar]
- Ventura M. A., Thomopoulos P. ADP and ATP activate distinct signaling pathways in human promonocytic U-937 cells differentiated with 1,25-dihydroxy-vitamin D3. Mol Pharmacol. 1995 Jan;47(1):104–114. [PubMed] [Google Scholar]
- Vial C., Hechler B., Léon C., Cazenave J. P., Gachet C. Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost. 1997 Dec;78(6):1500–1504. [PubMed] [Google Scholar]
- Vigne P., Feolde E., Breittmayer J. P., Frelin C. Characterization of the effects of 2-methylthio-ATP and 2-chloro-ATP on brain capillary endothelial cells: similarities to ADP and differences from ATP. Br J Pharmacol. 1994 Jul;112(3):775–780. doi: 10.1111/j.1476-5381.1994.tb13146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vulchanova L., Arvidsson U., Riedl M., Wang J., Buell G., Surprenant A., North R. A., Elde R. Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8063–8067. doi: 10.1073/pnas.93.15.8063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb T. E., Boluyt M. O., Barnard E. A. Molecular biology of P2Y purinoceptors: expression in rat heart. J Auton Pharmacol. 1996 Dec;16(6):303–307. doi: 10.1111/j.1474-8673.1996.tb00040.x. [DOI] [PubMed] [Google Scholar]
- Webb T. E., Feolde E., Vigne P., Neary J. T., Runberg A., Frelin C., Barnard E. A. The P2Y purinoceptor in rat brain microvascular endothelial cells couple to inhibition of adenylate cyclase. Br J Pharmacol. 1996 Dec;119(7):1385–1392. doi: 10.1111/j.1476-5381.1996.tb16050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb T. E., Henderson D., King B. F., Wang S., Simon J., Bateson A. N., Burnstock G., Barnard E. A. A novel G protein-coupled P2 purinoceptor (P2Y3) activated preferentially by nucleoside diphosphates. Mol Pharmacol. 1996 Aug;50(2):258–265. [PubMed] [Google Scholar]
- Webb T. E., Kaplan M. G., Barnard E. A. Identification of 6H1 as a P2Y purinoceptor: P2Y5. Biochem Biophys Res Commun. 1996 Feb 6;219(1):105–110. doi: 10.1006/bbrc.1996.0189. [DOI] [PubMed] [Google Scholar]
- Webb T. E., Kaplan M. G., Barnard E. A. Identification of 6H1 as a P2Y purinoceptor: P2Y5. Biochem Biophys Res Commun. 1996 Feb 6;219(1):105–110. doi: 10.1006/bbrc.1996.0189. [DOI] [PubMed] [Google Scholar]
- Webb T. E., Simon J., Krishek B. J., Bateson A. N., Smart T. G., King B. F., Burnstock G., Barnard E. A. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 1993 Jun 14;324(2):219–225. doi: 10.1016/0014-5793(93)81397-i. [DOI] [PubMed] [Google Scholar]
- Wilkinson G. F., Purkiss J. R., Boarder M. R. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C. Br J Pharmacol. 1993 Mar;108(3):689–693. doi: 10.1111/j.1476-5381.1993.tb12862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada M., Hamamori Y., Akita H., Yokoyama M. P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular myocytes. Circ Res. 1992 Mar;70(3):477–485. doi: 10.1161/01.res.70.3.477. [DOI] [PubMed] [Google Scholar]
- Yamaguchi M., Hirayoshi K., Okuma M., Nagata K. Enhancement of differentiation induction of mouse myelomonocytic leukemic cells by extracellular ATP. J Cell Physiol. 1994 Jun;159(3):441–449. doi: 10.1002/jcp.1041590308. [DOI] [PubMed] [Google Scholar]
- Yokomizo T., Izumi T., Chang K., Takuwa Y., Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997 Jun 5;387(6633):620–624. doi: 10.1038/42506. [DOI] [PubMed] [Google Scholar]
- Zheng J. S., Christie A., Levy M. N., Scarpa A. Ca2+ mobilization by extracellular ATP in rat cardiac myocytes: regulation by protein kinase C and A. Am J Physiol. 1992 Nov;263(5 Pt 1):C933–C940. doi: 10.1152/ajpcell.1992.263.5.C933. [DOI] [PubMed] [Google Scholar]
- Zheng J. S., Christie A., Levy M. N., Scarpa A. Modulation by extracellular ATP of two distinct currents in rat myocytes. Am J Physiol. 1993 Jun;264(6 Pt 1):C1411–C1417. doi: 10.1152/ajpcell.1993.264.6.C1411. [DOI] [PubMed] [Google Scholar]