Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):551–560. doi: 10.1042/bj3360551

Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1-null mice, but not in hepatocytes from p16INK4a-null mice.

K L Auer 1, J S Park 1, P Seth 1, R J Coffey 1, G Darlington 1, A Abo 1, M McMahon 1, R A Depinho 1, P B Fisher 1, P Dent 1
PMCID: PMC1219904  PMID: 9841865

Abstract

In primary rat hepatocytes, prolonged activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway is associated with a decrease in DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor (CKI) proteins p21Cip-1/WAF1 and p16INK4a. To evaluate the relative importance of these CKIs in mediating this response, we determined the impact of prolonged MAPK activation on DNA synthesis in primary cultures of hepatocytes derived from mice embryonically deleted (null) for either p21Cip-1/WAF1 or p16INK4a. When MAPK was activated in wild-type mouse hepatocytes for 24 h, via infection with a construct to express an inducible oestrogen receptor-Raf-1 fusion protein (DeltaRaf:ER), the expression of p21Cip-1/WAF1 and p16INK4a CKI proteins increased, cyclin-dependent kinase 2 (cdk2) and cdk4 activities decreased, and DNA synthesis decreased. Inhibition of RhoA GTPase function increased the basal expression of p21Cip-1/WAF1 and p27Kip-1 but not p16INK4a, and enhanced the ability of MAPK signalling to decrease DNA synthesis. Ablation of the expression of CCAATT enhancer-binding protein alpha (C/EBPalpha), but not of the expression of C/EBPbeta, decreased the ability of MAPK signalling to induce p21Cip-1/WAF1. When MAPK was activated in p16INK4a-null hepatocytes for 24 h, the expression of p21Cip-1/WAF1 increased, cdk2 and cdk4 activities decreased and DNA synthesis decreased. In contrast with these findings, prolonged activation of the MAPK pathway in hepatocytes from p21Cip-1/WAF1-null mice enhanced cdk2 and cdk4 activities and caused a large increase in DNA synthesis, despite elevated expression of p16INK4a. Inhibition of RhoA GTPase activity in p21Cip-1/WAF1-null cells partly blunted both the basal levels of DNA synthesis and the ability of prolonged MAPK signalling to increase DNA synthesis. Expression of anti-sense p21Cip-1/WAF1 in either wild-type or p16INK4a-null hepatocytes decreased the ability of prolonged MAPK signalling to increase the expression of p21Cip-1/WAF1, and permitted MAPK signalling to increase both cdk2 and cdk4 activities and DNA synthesis. These results argue that the ability of prolonged MAPK signalling to inhibit DNA synthesis in hepatocytes requires the expression of p21Cip-1/WAF1, and that the increased expression of p16INK4a has a smaller role in the ability of this stimulus to mediate growth arrest. Our results also suggest that RhoA function can modulate DNA synthesis in primary hepatocytes via the expression of p21Cip-1/WAF1 and p27Kip-1.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht J. H., Meyer A. H., Hu M. Y. Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology. 1997 Mar;25(3):557–563. doi: 10.1002/hep.510250311. [DOI] [PubMed] [Google Scholar]
  2. Auer K. L., Contessa J., Brenz-Verca S., Pirola L., Rusconi S., Cooper G., Abo A., Wymann M. P., Davis R. J., Birrer M. The Ras/Rac1/Cdc42/SEK/JNK/c-Jun cascade is a key pathway by which agonists stimulate DNA synthesis in primary cultures of rat hepatocytes. Mol Biol Cell. 1998 Mar;9(3):561–573. doi: 10.1091/mbc.9.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buck M., Turler H., Chojkier M. LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation. EMBO J. 1994 Feb 15;13(4):851–860. doi: 10.1002/j.1460-2075.1994.tb06328.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chellappan S. P., Giordano A., Fisher P. B. Role of cyclin-dependent kinases and their inhibitors in cellular differentiation and development. Curr Top Microbiol Immunol. 1998;227:57–103. doi: 10.1007/978-3-642-71941-7_4. [DOI] [PubMed] [Google Scholar]
  5. Chen T. C., Hsieh L. L., Kuo T. T. Absence of p53 gene mutation and infrequent overexpression of p53 protein in hepatoblastoma. J Pathol. 1995 Jul;176(3):243–247. doi: 10.1002/path.1711760306. [DOI] [PubMed] [Google Scholar]
  6. Chinery R., Brockman J. A., Peeler M. O., Shyr Y., Beauchamp R. D., Coffey R. J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: a p53-independent induction of p21WAF1/CIP1 via C/EBPbeta. Nat Med. 1997 Nov;3(11):1233–1241. doi: 10.1038/nm1197-1233. [DOI] [PubMed] [Google Scholar]
  7. Cram E. J., Ramos R. A., Wang E. C., Cha H. H., Nishio Y., Firestone G. L. Role of the CCAAT/enhancer binding protein-alpha transcription factor in the glucocorticoid stimulation of p21waf1/cip1 gene promoter activity in growth-arrested rat hepatoma cells. J Biol Chem. 1998 Jan 23;273(4):2008–2014. doi: 10.1074/jbc.273.4.2008. [DOI] [PubMed] [Google Scholar]
  8. Cristiano R. J., Smith L. C., Kay M. A., Brinkley B. R., Woo S. L. Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11548–11552. doi: 10.1073/pnas.90.24.11548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Cunto F., Topley G., Calautti E., Hsiao J., Ong L., Seth P. K., Dotto G. P. Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science. 1998 May 15;280(5366):1069–1072. doi: 10.1126/science.280.5366.1069. [DOI] [PubMed] [Google Scholar]
  10. Diehl A. M., Rai R. M. Liver regeneration 3: Regulation of signal transduction during liver regeneration. FASEB J. 1996 Feb;10(2):215–227. doi: 10.1096/fasebj.10.2.8641555. [DOI] [PubMed] [Google Scholar]
  11. Fukasawa K., Vande Woude G. F. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol. 1997 Jan;17(1):506–518. doi: 10.1128/mcb.17.1.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendricks-Taylor L. R., Darlington G. J. Inhibition of cell proliferation by C/EBP alpha occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res. 1995 Nov 25;23(22):4726–4733. doi: 10.1093/nar/23.22.4726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirai A., Nakamura S., Noguchi Y., Yasuda T., Kitagawa M., Tatsuno I., Oeda T., Tahara K., Terano T., Narumiya S. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem. 1997 Jan 3;272(1):13–16. [PubMed] [Google Scholar]
  14. Huppi K., Siwarski D., Dosik J., Michieli P., Chedid M., Reed S., Mock B., Givol D., Mushinski J. F. Molecular cloning, sequencing, chromosomal localization and expression of mouse p21 (Waf1). Oncogene. 1994 Oct;9(10):3017–3020. [PubMed] [Google Scholar]
  15. Imai Y., Oda H., Arai M., Shimizu S., Nakatsuru Y., Inoue T., Ishikawa T. Mutational analysis of the p53 and K-ras genes and allelotype study of the Rb-1 gene for investigating the pathogenesis of combined hapatocellular-cholangiocellular carcinomas. Jpn J Cancer Res. 1996 Oct;87(10):1056–1062. doi: 10.1111/j.1349-7006.1996.tb03110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kamijo T., Zindy F., Roussel M. F., Quelle D. E., Downing J. R., Ashmun R. A., Grosveld G., Sherr C. J. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997 Nov 28;91(5):649–659. doi: 10.1016/s0092-8674(00)80452-3. [DOI] [PubMed] [Google Scholar]
  17. Lloyd A. C., Obermüller F., Staddon S., Barth C. F., McMahon M., Land H. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 1997 Mar 1;11(5):663–677. doi: 10.1101/gad.11.5.663. [DOI] [PubMed] [Google Scholar]
  18. Loyer P., Cariou S., Glaise D., Bilodeau M., Baffet G., Guguen-Guillouzo C. Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J Biol Chem. 1996 May 10;271(19):11484–11492. doi: 10.1074/jbc.271.19.11484. [DOI] [PubMed] [Google Scholar]
  19. Macleod K. F., Sherry N., Hannon G., Beach D., Tokino T., Kinzler K., Vogelstein B., Jacks T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995 Apr 15;9(8):935–944. doi: 10.1101/gad.9.8.935. [DOI] [PubMed] [Google Scholar]
  20. Michalopoulos G. K., DeFrances M. C. Liver regeneration. Science. 1997 Apr 4;276(5309):60–66. doi: 10.1126/science.276.5309.60. [DOI] [PubMed] [Google Scholar]
  21. Missero C., Calautti E., Eckner R., Chin J., Tsai L. H., Livingston D. M., Dotto G. P. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5451–5455. doi: 10.1073/pnas.92.12.5451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olson M. F., Paterson H. F., Marshall C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature. 1998 Jul 16;394(6690):295–299. doi: 10.1038/28425. [DOI] [PubMed] [Google Scholar]
  23. Pomerantz J., Schreiber-Agus N., Liégeois N. J., Silverman A., Alland L., Chin L., Potes J., Chen K., Orlow I., Lee H. W. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998 Mar 20;92(6):713–723. doi: 10.1016/s0092-8674(00)81400-2. [DOI] [PubMed] [Google Scholar]
  24. Pu H., Tsuji T., Kondo A., Fushimi K., Ohashi R., Inoue Y., Mimura T., Hamazaki K., Miyazaki M., Namba M. Comparison of cellular characteristics between human hepatoma cell lines with wild-type p53 and those with mutant-type p53 gene. Acta Med Okayama. 1997 Dec;51(6):313–319. doi: 10.18926/AMO/30772. [DOI] [PubMed] [Google Scholar]
  25. Quelle D. E., Ashmun R. A., Hannon G. J., Rehberger P. A., Trono D., Richter K. H., Walker C., Beach D., Sherr C. J., Serrano M. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene. 1995 Aug 17;11(4):635–645. [PubMed] [Google Scholar]
  26. Serfas M. S., Goufman E., Feuerman M. H., Gartel A. L., Tyner A. L. p53-independent induction of p21WAF1/CIP1 expression in pericentral hepatocytes following carbon tetrachloride intoxication. Cell Growth Differ. 1997 Sep;8(9):951–961. [PubMed] [Google Scholar]
  27. Serrano M., Gómez-Lahoz E., DePinho R. A., Beach D., Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science. 1995 Jan 13;267(5195):249–252. doi: 10.1126/science.7809631. [DOI] [PubMed] [Google Scholar]
  28. Serrano M., Lee H., Chin L., Cordon-Cardo C., Beach D., DePinho R. A. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996 Apr 5;85(1):27–37. doi: 10.1016/s0092-8674(00)81079-x. [DOI] [PubMed] [Google Scholar]
  29. Sewing A., Wiseman B., Lloyd A. C., Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol. 1997 Sep;17(9):5588–5597. doi: 10.1128/mcb.17.9.5588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sherr C. J., Roberts J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995 May 15;9(10):1149–1163. doi: 10.1101/gad.9.10.1149. [DOI] [PubMed] [Google Scholar]
  31. Spector M. S., Auer K. L., Jarvis W. D., Ishac E. J., Gao B., Kunos G., Dent P. Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes. Mol Cell Biol. 1997 Jul;17(7):3556–3565. doi: 10.1128/mcb.17.7.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teramoto T., Satonaka K., Kitazawa S., Fujimori T., Hayashi K., Maeda S. p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res. 1994 Jan 1;54(1):231–235. [PubMed] [Google Scholar]
  33. Timchenko N. A., Harris T. E., Wilde M., Bilyeu T. A., Burgess-Beusse B. L., Finegold M. J., Darlington G. J. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice. Mol Cell Biol. 1997 Dec;17(12):7353–7361. doi: 10.1128/mcb.17.12.7353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Timchenko N. A., Wilde M., Nakanishi M., Smith J. R., Darlington G. J. CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev. 1996 Apr 1;10(7):804–815. doi: 10.1101/gad.10.7.804. [DOI] [PubMed] [Google Scholar]
  35. Tombes R. M., Auer K. L., Mikkelsen R., Valerie K., Wymann M. P., Marshall C. J., McMahon M., Dent P. The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J. 1998 Mar 15;330(Pt 3):1451–1460. doi: 10.1042/bj3301451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber J. D., Hu W., Jefcoat S. C., Jr, Raben D. M., Baldassare J. J. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem. 1997 Dec 26;272(52):32966–32971. doi: 10.1074/jbc.272.52.32966. [DOI] [PubMed] [Google Scholar]
  37. Woods D., Parry D., Cherwinski H., Bosch E., Lees E., McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol. 1997 Sep;17(9):5598–5611. doi: 10.1128/mcb.17.9.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu H., Wade M., Krall L., Grisham J., Xiong Y., Van Dyke T. Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 1996 Feb 1;10(3):245–260. doi: 10.1101/gad.10.3.245. [DOI] [PubMed] [Google Scholar]
  39. Zauberman A., Oren M., Zipori D. Involvement of p21(WAF1/Cip1), CDK4 and Rb in activin A mediated signaling leading to hepatoma cell growth inhibition. Oncogene. 1997 Oct 2;15(14):1705–1711. doi: 10.1038/sj.onc.1201348. [DOI] [PubMed] [Google Scholar]
  40. Zhang Y., Xiong Y., Yarbrough W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998 Mar 20;92(6):725–734. doi: 10.1016/s0092-8674(00)81401-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES