Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):593–598. doi: 10.1042/bj3360593

Genetic defect in N-acetylglucosaminyltransferase I gene of a ricin-resistant baby hamster kidney mutant.

A S Opat 1, H Puthalakath 1, J Burke 1, P A Gleeson 1
PMCID: PMC1219909  PMID: 9841870

Abstract

The analysis of mutations associated with glycosylation-defective cell lines has the potential for identifying critical residues associated with the activities of enzymes involved in the biosynthesis of glycoconjugates. A ricin-resistant (RicR) baby hamster kidney (BHK) cell mutant, clone RicR14, has a deficiency in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and as a consequence is unable to synthesize complex and hybrid N-glycans. Here we show that RicR14 cells transfected with wild-type GlcNAc-TI regained the ability to synthesize complex N-glycans, demonstrating that the glycosylation defect of RicR14 cells is due solely to the lack of GlcNAc-TI activity. With the use of specific antibodies to GlcNAc-TI, RicR14 cells were shown to synthesize an inactive GlcNAc-TI protein that is correctly localized to the Golgi apparatus. We have cloned and sequenced the open reading frame of GlcNAc-TI from parental BHK and RicR14 cells. A comparison of several RicR14 cDNA clones with the parental BHK GlcNAc-TI sequence indicated the presence of two different RicR14 cDNA species. One contained a premature stop codon at position +81, whereas the second contained a point mutation in the catalytic domain of GlcNAc-TI resulting in the amino acid substitution Gly320-->Asp. The introduction of a Gly320-->Asp mutation into wild-type rabbit GlcNAc-TI resulted in a complete loss of activity; the GlcNAc-TI mutant was correctly localized to the Golgi, indicating that the inactive GlcNAc-TI protein was transport-competent. Gly320 is conserved in GlcNAc-TI from all species so far examined. Overall these results demonstrate that Gly320 is a critical residue for GlcNAc-TI activity.

Full Text

The Full Text of this article is available as a PDF (175.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke J., Pettitt J. M., Humphris D., Gleeson P. A. Medial-Golgi retention of N-acetylglucosaminyltransferase I. Contribution from all domains of the enzyme. J Biol Chem. 1994 Apr 22;269(16):12049–12059. [PubMed] [Google Scholar]
  2. Burke J., Pettitt J. M., Schachter H., Sarkar M., Gleeson P. A. The transmembrane and flanking sequences of beta 1,2-N-acetylglucosaminyltransferase I specify medial-Golgi localization. J Biol Chem. 1992 Dec 5;267(34):24433–24440. [PubMed] [Google Scholar]
  3. Cummings R. D., Trowbridge I. S., Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J Biol Chem. 1982 Nov 25;257(22):13421–13427. [PubMed] [Google Scholar]
  4. Edwards J. G., Dysart J. M., Hughes R. C. Cellular adhesiveness reduced in ricin-resistant hamster fibroblasts. Nature. 1976 Nov 4;264(5581):66–68. doi: 10.1038/264066a0. [DOI] [PubMed] [Google Scholar]
  5. Gleeson P. A. Targeting of proteins to the Golgi apparatus. Histochem Cell Biol. 1998 May-Jun;109(5-6):517–532. doi: 10.1007/s004180050252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hughes R. C., Mills G. Analysis by lectin affinity chromatography of N-linked glycans of BHK cells and ricin-resistant mutants. Biochem J. 1983 Jun 1;211(3):575–587. doi: 10.1042/bj2110575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ioffe E., Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728–732. doi: 10.1073/pnas.91.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ke S. H., Madison E. L. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 1997 Aug 15;25(16):3371–3372. doi: 10.1093/nar/25.16.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kumar R., Yang J., Larsen R. D., Stanley P. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9948–9952. doi: 10.1073/pnas.87.24.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meager A., Ungkitchanukit A., Hughes R. C. Variants of hamster fibroblasts resistant to Ricinus communis toxin (ricin). Biochem J. 1976 Jan 15;154(1):113–124. doi: 10.1042/bj1540113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Metzler M., Gertz A., Sarkar M., Schachter H., Schrader J. W., Marth J. D. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 1994 May 1;13(9):2056–2065. doi: 10.1002/j.1460-2075.1994.tb06480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nilsson T., Rabouille C., Hui N., Watson R., Warren G. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci. 1996 Jul;109(Pt 7):1975–1989. doi: 10.1242/jcs.109.7.1975. [DOI] [PubMed] [Google Scholar]
  13. Puthalakath H., Burke J., Gleeson P. A. Glycosylation defect in Lec1 Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene. J Biol Chem. 1996 Nov 1;271(44):27818–27822. doi: 10.1074/jbc.271.44.27818. [DOI] [PubMed] [Google Scholar]
  14. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  15. Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  16. Sarkar M., Hull E., Nishikawa Y., Simpson R. J., Moritz R. L., Dunn R., Schachter H. Molecular cloning and expression of cDNA encoding the enzyme that controls conversion of high-mannose to hybrid and complex N-glycans: UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):234–238. doi: 10.1073/pnas.88.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schachter H. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol. 1986 Mar;64(3):163–181. doi: 10.1139/o86-026. [DOI] [PubMed] [Google Scholar]
  18. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  19. Stanley P., Ioffe E. Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J. 1995 Nov;9(14):1436–1444. doi: 10.1096/fasebj.9.14.7589985. [DOI] [PubMed] [Google Scholar]
  20. Stanley P., Narasimhan S., Siminovitch L., Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3323–3327. doi: 10.1073/pnas.72.9.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vischer P., Hughes R. C. Glycosyl transferases of baby-hamster-kidney (BHK) cells and ricin-resistant mutants. N-glycan biosynthesis. Eur J Biochem. 1981 Jul;117(2):275–284. doi: 10.1111/j.1432-1033.1981.tb06334.x. [DOI] [PubMed] [Google Scholar]
  22. Weinstein J., Sundaram S., Wang X., Delgado D., Basu R., Stanley P. A point mutation causes mistargeting of Golgi GlcNAc-TV in the Lec4A Chinese hamster ovary glycosylation mutant. J Biol Chem. 1996 Nov 1;271(44):27462–27469. doi: 10.1074/jbc.271.44.27462. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES