Abstract
The analysis of mutations associated with glycosylation-defective cell lines has the potential for identifying critical residues associated with the activities of enzymes involved in the biosynthesis of glycoconjugates. A ricin-resistant (RicR) baby hamster kidney (BHK) cell mutant, clone RicR14, has a deficiency in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and as a consequence is unable to synthesize complex and hybrid N-glycans. Here we show that RicR14 cells transfected with wild-type GlcNAc-TI regained the ability to synthesize complex N-glycans, demonstrating that the glycosylation defect of RicR14 cells is due solely to the lack of GlcNAc-TI activity. With the use of specific antibodies to GlcNAc-TI, RicR14 cells were shown to synthesize an inactive GlcNAc-TI protein that is correctly localized to the Golgi apparatus. We have cloned and sequenced the open reading frame of GlcNAc-TI from parental BHK and RicR14 cells. A comparison of several RicR14 cDNA clones with the parental BHK GlcNAc-TI sequence indicated the presence of two different RicR14 cDNA species. One contained a premature stop codon at position +81, whereas the second contained a point mutation in the catalytic domain of GlcNAc-TI resulting in the amino acid substitution Gly320-->Asp. The introduction of a Gly320-->Asp mutation into wild-type rabbit GlcNAc-TI resulted in a complete loss of activity; the GlcNAc-TI mutant was correctly localized to the Golgi, indicating that the inactive GlcNAc-TI protein was transport-competent. Gly320 is conserved in GlcNAc-TI from all species so far examined. Overall these results demonstrate that Gly320 is a critical residue for GlcNAc-TI activity.
Full Text
The Full Text of this article is available as a PDF (175.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burke J., Pettitt J. M., Humphris D., Gleeson P. A. Medial-Golgi retention of N-acetylglucosaminyltransferase I. Contribution from all domains of the enzyme. J Biol Chem. 1994 Apr 22;269(16):12049–12059. [PubMed] [Google Scholar]
- Burke J., Pettitt J. M., Schachter H., Sarkar M., Gleeson P. A. The transmembrane and flanking sequences of beta 1,2-N-acetylglucosaminyltransferase I specify medial-Golgi localization. J Biol Chem. 1992 Dec 5;267(34):24433–24440. [PubMed] [Google Scholar]
- Cummings R. D., Trowbridge I. S., Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J Biol Chem. 1982 Nov 25;257(22):13421–13427. [PubMed] [Google Scholar]
- Edwards J. G., Dysart J. M., Hughes R. C. Cellular adhesiveness reduced in ricin-resistant hamster fibroblasts. Nature. 1976 Nov 4;264(5581):66–68. doi: 10.1038/264066a0. [DOI] [PubMed] [Google Scholar]
- Gleeson P. A. Targeting of proteins to the Golgi apparatus. Histochem Cell Biol. 1998 May-Jun;109(5-6):517–532. doi: 10.1007/s004180050252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes R. C., Mills G. Analysis by lectin affinity chromatography of N-linked glycans of BHK cells and ricin-resistant mutants. Biochem J. 1983 Jun 1;211(3):575–587. doi: 10.1042/bj2110575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ioffe E., Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728–732. doi: 10.1073/pnas.91.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ke S. H., Madison E. L. Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res. 1997 Aug 15;25(16):3371–3372. doi: 10.1093/nar/25.16.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar R., Yang J., Larsen R. D., Stanley P. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9948–9952. doi: 10.1073/pnas.87.24.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meager A., Ungkitchanukit A., Hughes R. C. Variants of hamster fibroblasts resistant to Ricinus communis toxin (ricin). Biochem J. 1976 Jan 15;154(1):113–124. doi: 10.1042/bj1540113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzler M., Gertz A., Sarkar M., Schachter H., Schrader J. W., Marth J. D. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 1994 May 1;13(9):2056–2065. doi: 10.1002/j.1460-2075.1994.tb06480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson T., Rabouille C., Hui N., Watson R., Warren G. The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci. 1996 Jul;109(Pt 7):1975–1989. doi: 10.1242/jcs.109.7.1975. [DOI] [PubMed] [Google Scholar]
- Puthalakath H., Burke J., Gleeson P. A. Glycosylation defect in Lec1 Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene. J Biol Chem. 1996 Nov 1;271(44):27818–27822. doi: 10.1074/jbc.271.44.27818. [DOI] [PubMed] [Google Scholar]
- Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992 Jan 30;355(6359):409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
- Sarkar M., Hull E., Nishikawa Y., Simpson R. J., Moritz R. L., Dunn R., Schachter H. Molecular cloning and expression of cDNA encoding the enzyme that controls conversion of high-mannose to hybrid and complex N-glycans: UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):234–238. doi: 10.1073/pnas.88.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachter H. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol. 1986 Mar;64(3):163–181. doi: 10.1139/o86-026. [DOI] [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Stanley P., Ioffe E. Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J. 1995 Nov;9(14):1436–1444. doi: 10.1096/fasebj.9.14.7589985. [DOI] [PubMed] [Google Scholar]
- Stanley P., Narasimhan S., Siminovitch L., Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3323–3327. doi: 10.1073/pnas.72.9.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vischer P., Hughes R. C. Glycosyl transferases of baby-hamster-kidney (BHK) cells and ricin-resistant mutants. N-glycan biosynthesis. Eur J Biochem. 1981 Jul;117(2):275–284. doi: 10.1111/j.1432-1033.1981.tb06334.x. [DOI] [PubMed] [Google Scholar]
- Weinstein J., Sundaram S., Wang X., Delgado D., Basu R., Stanley P. A point mutation causes mistargeting of Golgi GlcNAc-TV in the Lec4A Chinese hamster ovary glycosylation mutant. J Biol Chem. 1996 Nov 1;271(44):27462–27469. doi: 10.1074/jbc.271.44.27462. [DOI] [PubMed] [Google Scholar]
