Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):659–666. doi: 10.1042/bj3360659

Calcium entry in Trypanosoma brucei is regulated by phospholipase A2 and arachidonic acid.

J Eintracht 1, R Maathai 1, A Mellors 1, L Ruben 1
PMCID: PMC1219917  PMID: 9841878

Abstract

In contrast with mammalian cells, little is known about the control of Ca2+ entry into primitive protozoans. Here we report that Ca2+ influx in pathogenic Trypanosoma brucei can be regulated by phospholipase A2 (PLA2) and the subsequent release of arachidonic acid (AA). Several PLA2 inhibitors blocked Ca2+ entry; 3-(4-octadecyl)-benzoylacrylic acid (OBAA; IC50 0.4+/-0.1 microM) was the most potent. We identified in live trypanosomes PLA2 activity that was sensitive to OBAA and could be stimulated by Ca2+, suggesting the presence of positive feedback control. The cell-associated PLA2 activity was able to release [14C]AA from labelled phospholipid substrates. Exogenous AA (5-50 microM) also initiated Ca2+ entry in a manner that was inhibited by the Ca2+ antagonist La3+ (100 microM). Ca2+ entry did not depend on AA metabolism or protein kinase activation. The cell response was specific for AA, and fatty acids with greater saturation than tetraeicosanoic acid (AA) or with chain lengths less than C20 exhibited greatly diminished ability to initiate Ca2+ influx. Myristate and palmitate inhibited PLA2 activity and also inhibited Ca2+ influx. Overall, these results demonstrate that Ca2+ entry into T. brucei can result from phospholipid hydrolysis and the release of eicosanoic acids.

Full Text

The Full Text of this article is available as a PDF (168.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benaim G., Lopez-Estraño C., Docampo R., Moreno S. N. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine. Biochem J. 1993 Dec 15;296(Pt 3):759–763. doi: 10.1042/bj2960759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black S., Vandeweerd V. Serum lipoproteins are required for multiplication of Trypanosoma brucei brucei under axenic culture conditions. Mol Biochem Parasitol. 1989 Nov;37(1):65–72. doi: 10.1016/0166-6851(89)90103-5. [DOI] [PubMed] [Google Scholar]
  3. Bowes A. E., Samad A. H., Jiang P., Weaver B., Mellors A. The acquisition of lysophosphatidylcholine by African trypanosomes. J Biol Chem. 1993 Jul 5;268(19):13885–13892. [PubMed] [Google Scholar]
  4. Brüne B., von Appen F., Ullrich V. Calcium homeostasis and eicosanoid formation in human platelets. Prostaglandins Leukot Essent Fatty Acids. 1993 Apr;48(4):277–289. doi: 10.1016/0952-3278(93)90217-k. [DOI] [PubMed] [Google Scholar]
  5. Clarkson A. B., Jr, Amole B. O. Role of calcium in trypanocidal drug action. Science. 1982 Jun 18;216(4552):1321–1323. doi: 10.1126/science.6805075. [DOI] [PubMed] [Google Scholar]
  6. Colliard-Rouiller C., Durand J. Arachidonic acid-induced calcium signalling in human airway smooth muscle cells. Respir Physiol. 1997 Mar;107(3):263–273. doi: 10.1016/s0034-5687(96)02521-2. [DOI] [PubMed] [Google Scholar]
  7. D'hondt J., Van Meirvenne N., Moens L., Kondo M. Ca2+ is essential cofactor for trypanocidal activity of normal human serum. Nature. 1979 Dec 6;282(5739):613–615. doi: 10.1038/282613a0. [DOI] [PubMed] [Google Scholar]
  8. Dho S., Grinstein S., Corey E. J., Su W. G., Pace-Asciak C. R. Hepoxilin A3 induces changes in cytosolic calcium, intracellular pH and membrane potential in human neutrophils. Biochem J. 1990 Feb 15;266(1):63–68. doi: 10.1042/bj2660063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon H., Williamson J. The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. Comp Biochem Physiol. 1970 Mar 1;33(1):111–128. doi: 10.1016/0010-406x(70)90487-1. [DOI] [PubMed] [Google Scholar]
  10. Force T., Hyman G., Hajjar R., Sellmayer A., Bonventre J. V. Noncyclooxygenase metabolites of arachidonic acid amplify the vasopressin-induced Ca2+ signal in glomerular mesangial cells by releasing Ca2+ from intracellular stores. J Biol Chem. 1991 Mar 5;266(7):4295–4302. [PubMed] [Google Scholar]
  11. Hambrey P. N., Forsberg C. M., Mellors A., Tizard I. R., Werchola G. M. Isolation of phospholipase A1 from Trypanosoma brucei. Tropenmed Parasitol. 1984 Mar;35(1):15–19. [PubMed] [Google Scholar]
  12. Hambrey P. N., Mellors A., Tizard I. R. The phospholipases of pathogenic and non-pathogenic Trypanosoma species. Mol Biochem Parasitol. 1981 Feb;2(3-4):177–186. doi: 10.1016/0166-6851(81)90098-0. [DOI] [PubMed] [Google Scholar]
  13. Hildebrandt E., Albanesi J. P., Falck J. R., Campbell W. B. Regulation of calcium influx and catecholamine secretion in chromaffin cells by a cytochrome P450 metabolite of arachidonic acid. J Lipid Res. 1995 Dec;36(12):2599–2608. [PubMed] [Google Scholar]
  14. Kincaid R. L., Coulson C. C. Rapid purification of calmodulin and S-100 protein by affinity chromatography with melittin immobilized to sepharose. Biochem Biophys Res Commun. 1985 Nov 27;133(1):256–264. doi: 10.1016/0006-291x(85)91869-8. [DOI] [PubMed] [Google Scholar]
  15. Köhler T., Heinisch M., Kirchner M., Peinhardt G., Hirschelmann R., Nuhn P. Phospholipase A2 inhibition by alkylbenzoylacrylic acids. Biochem Pharmacol. 1992 Aug 18;44(4):805–813. doi: 10.1016/0006-2952(92)90419-j. [DOI] [PubMed] [Google Scholar]
  16. Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L. Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol. 1993 May;59(1):41–48. doi: 10.1016/0166-6851(93)90005-i. [DOI] [PubMed] [Google Scholar]
  17. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  18. Meves H. Modulation of ion channels by arachidonic acid. Prog Neurobiol. 1994 Jun;43(2):175–186. doi: 10.1016/0301-0082(94)90012-4. [DOI] [PubMed] [Google Scholar]
  19. Moreno S. N., Docampo R., Vercesi A. E. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release. J Biol Chem. 1992 Mar 25;267(9):6020–6026. [PubMed] [Google Scholar]
  20. Morgan G. A., Hamilton E. A., Black S. J. The requirements for G1 checkpoint progression of Trypanosoma brucei S 427 clone 1. Mol Biochem Parasitol. 1996 Jun;78(1-2):195–207. doi: 10.1016/s0166-6851(96)02625-4. [DOI] [PubMed] [Google Scholar]
  21. Mousli M., Bueb J. L., Bronner C., Rouot B., Landry Y. G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci. 1990 Sep;11(9):358–362. doi: 10.1016/0165-6147(90)90179-c. [DOI] [PubMed] [Google Scholar]
  22. Munaron L., Antoniotti S., Distasi C., Lovisolo D. Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. Cell Calcium. 1997 Sep;22(3):179–188. doi: 10.1016/s0143-4160(97)90011-7. [DOI] [PubMed] [Google Scholar]
  23. Nok A. J., Esievo K. A., Ibrahim S., Ukoha A. I., Ikediobi C. O. Phospholipase A2 from Trypanosoma congolense: characterization and haematological properties. Cell Biochem Funct. 1993 Jun;11(2):125–130. doi: 10.1002/cbf.290110208. [DOI] [PubMed] [Google Scholar]
  24. Nolan D. P., Reverlard P., Pays E. Overexpression and characterization of a gene for a Ca(2+)-ATPase of the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem. 1994 Oct 21;269(42):26045–26051. [PubMed] [Google Scholar]
  25. Patnaik P. K., Field M. C., Menon A. K., Cross G. A., Yee M. C., Bütikofer P. Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol. 1993 Mar;58(1):97–105. doi: 10.1016/0166-6851(93)90094-e. [DOI] [PubMed] [Google Scholar]
  26. Reynaud D., Pace-Asciak C. R. 12-HETE and 12-HPETE potently stimulate intracellular release of calcium in intact human neutrophils. Prostaglandins Leukot Essent Fatty Acids. 1997 Jan;56(1):9–12. doi: 10.1016/s0952-3278(97)90518-4. [DOI] [PubMed] [Google Scholar]
  27. Ruben L., Akins C. D., Haghighat N. G., Xue L. Calcium influx in Trypanosoma brucei can be induced by amphiphilic peptides and amines. Mol Biochem Parasitol. 1996 Oct 30;81(2):191–200. doi: 10.1016/0166-6851(96)02707-7. [DOI] [PubMed] [Google Scholar]
  28. Ruben L., Akins C. D. Trypanosoma brucei: the tumor promoter thapsigargin stimulates calcium release from an intracellular compartment in slender bloodstream forms. Exp Parasitol. 1992 May;74(3):332–339. doi: 10.1016/0014-4894(92)90157-6. [DOI] [PubMed] [Google Scholar]
  29. Ruben L., Egwuagu C., Patton C. L. African trypanosomes contain calmodulin which is distinct from host calmodulin. Biochim Biophys Acta. 1983 Jul 29;758(2):104–113. doi: 10.1016/0304-4165(83)90290-8. [DOI] [PubMed] [Google Scholar]
  30. Ruben L., Hutchinson A., Moehlman J. Calcium homeostasis in Trypanosoma brucei. Identification of a pH-sensitive non-mitochondrial calcium pool. J Biol Chem. 1991 Dec 25;266(36):24351–24358. [PubMed] [Google Scholar]
  31. Rzigalinski B. A., Blackmore P. F., Rosenthal M. D. Arachidonate mobilization is coupled to depletion of intracellular calcium stores and influx of extracellular calcium in differentiated U937 cells. Biochim Biophys Acta. 1996 Feb 16;1299(3):342–352. doi: 10.1016/0005-2760(95)00224-3. [DOI] [PubMed] [Google Scholar]
  32. Seebeck T., Gehr P. Trypanocidal action of neuroleptic phenothiazines in Trypanosoma brucei. Mol Biochem Parasitol. 1983 Nov;9(3):197–208. doi: 10.1016/0166-6851(83)90097-x. [DOI] [PubMed] [Google Scholar]
  33. Shuttleworth T. J. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem. 1996 Sep 6;271(36):21720–21725. doi: 10.1074/jbc.271.36.21720. [DOI] [PubMed] [Google Scholar]
  34. Steiner M. R., Bomalaski J. S., Clark M. A. Responses of purified phospholipases A2 to phospholipase A2 activating protein (PLAP) and melittin. Biochim Biophys Acta. 1993 Feb 10;1166(1):124–130. doi: 10.1016/0005-2760(93)90292-h. [DOI] [PubMed] [Google Scholar]
  35. Stojdl D. F., Clarke M. W. Trypanosoma brucei: analysis of cytoplasmic Ca2+ during differentiation of bloodstream stages in vitro. Exp Parasitol. 1996 Jun;83(1):134–146. doi: 10.1006/expr.1996.0057. [DOI] [PubMed] [Google Scholar]
  36. Venkatesan S., Ormerod W. E. Lipid content of the slender and stumpy forms of Trypanosoma brucei rhodesiense: a comparative study. Comp Biochem Physiol B. 1976;53(4):481–487. doi: 10.1016/0305-0491(76)90203-0. [DOI] [PubMed] [Google Scholar]
  37. Vercesi A. E., Moreno S. N., Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994 Nov 15;304(Pt 1):227–233. doi: 10.1042/bj3040227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xiong Z. H., Ridgley E. L., Enis D., Olness F., Ruben L. Selective transfer of calcium from an acidic compartment to the mitochondrion of Trypanosoma brucei. Measurements with targeted aequorins. J Biol Chem. 1997 Dec 5;272(49):31022–31028. doi: 10.1074/jbc.272.49.31022. [DOI] [PubMed] [Google Scholar]
  39. Xiong Z. H., Ruben L. Nuclear calcium flux in Trypanosoma brucei can be quantified with targeted aequorin. Mol Biochem Parasitol. 1996 Dec 2;83(1):57–67. doi: 10.1016/s0166-6851(96)02750-8. [DOI] [PubMed] [Google Scholar]
  40. Xiong Z. H., Ruben L. Trypanosoma brucei: the dynamics of calcium movement between the cytosol, nucleus, and mitochondrion of intact cells. Exp Parasitol. 1998 Mar;88(3):231–239. doi: 10.1006/expr.1998.4249. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES