Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):667–673. doi: 10.1042/bj3360667

Design of a transferrin-proteinase inhibitor conjugate to probe for active cysteine proteinases in endosomes.

R Xing 1, R W Mason 1
PMCID: PMC1219918  PMID: 9841879

Abstract

A new technique has been developed to identify active proteinases in endosomes that does not require prior isolation of organelles and extraction of the active enzymes. [125I]Iodotyrosylalanyldiazomethane was reversibly conjugated to transferrin to selectively deliver it to endosomes. The protein was conjugated to the inhibitor via a disulphide bond using N-succinimidyl 3-(2-pyridyldithio)propionate. The inhibitor portion of the conjugate bound irreversibly to active cathepsins B and L, and subsequently the reacted enzymes were separated from the transferrin after SDS/PAGE under reducing conditions. Uptake of the protein-inhibitor conjugate and incorporation of inhibitor into cathepsins was blocked at 4 degreesC, demonstrating that the conjugate enters cells by receptor-mediated endocytosis. Furthermore, endocytosed transferrin-inhibitor conjugate could be recycled back to the extracellular medium and binding to the transferrin receptor could be blocked by native transferrin. Labelling of the enzymes was not blocked by incubating cells at 16 degreesC, consistent with the majority of the reagent being targeted to endosomes. The inhibited enzymes remained conjugated to transferrin, showing that the disulphide bond between the transferrin and inhibitor was not reduced in the endosome. Results from these studies show that endosomes contain both intermediate and late biosynthetic forms of active cathepsin B, which are indistinguishable from those found in mature lysosomes. These results indicate that the active enzymes in endosomes are not early biosynthetic forms in transit to lysosomes but most probably enter the endosome via retrograde traffic from the lysosome.

Full Text

The Full Text of this article is available as a PDF (159.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum J. S., Fiani M. L., Stahl P. D. Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem. 1991 Nov 25;266(33):22091–22095. [PubMed] [Google Scholar]
  2. Carlsson J., Drevin H., Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem J. 1978 Sep 1;173(3):723–737. doi: 10.1042/bj1730723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casciola-Rosen L. A., Hubbard A. L. Hydrolases in intracellular compartments of rat liver cells. Evidence for selective activation and/or delivery. J Biol Chem. 1991 Mar 5;266(7):4341–4347. [PubMed] [Google Scholar]
  4. Claus V., Jahraus A., Tjelle T., Berg T., Kirschke H., Faulstich H., Griffiths G. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem. 1998 Apr 17;273(16):9842–9851. doi: 10.1074/jbc.273.16.9842. [DOI] [PubMed] [Google Scholar]
  5. Collins D. S., Unanue E. R., Harding C. V. Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J Immunol. 1991 Dec 15;147(12):4054–4059. [PubMed] [Google Scholar]
  6. Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cumber A. J., Forrester J. A., Foxwell B. M., Ross W. C., Thorpe P. E. Preparation of antibody-toxin conjugates. Methods Enzymol. 1985;112:207–225. doi: 10.1016/s0076-6879(85)12018-5. [DOI] [PubMed] [Google Scholar]
  8. Delbrück R., Desel C., von Figura K., Hille-Rehfeld A. Proteolytic processing of cathepsin D in prelysosomal organelles. Eur J Cell Biol. 1994 Jun;64(1):7–14. [PubMed] [Google Scholar]
  9. Diesner F., Sommerlade H. J., Braulke T. Transport of newly synthesized arylsulfatase A to the lysosome via transferrin receptor-positive compartments. Biochem Biophys Res Commun. 1993 Nov 30;197(1):1–7. doi: 10.1006/bbrc.1993.2432. [DOI] [PubMed] [Google Scholar]
  10. Erickson A. H., Conner G. E., Blobel G. Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D. J Biol Chem. 1981 Nov 10;256(21):11224–11231. [PubMed] [Google Scholar]
  11. Feener E. P., Shen W. C., Ryser H. J. Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. J Biol Chem. 1990 Nov 5;265(31):18780–18785. [PubMed] [Google Scholar]
  12. Gal S., Willingham M. C., Gottesman M. M. Processing and lysosomal localization of a glycoprotein whose secretion is transformation stimulated. J Cell Biol. 1985 Feb;100(2):535–544. doi: 10.1083/jcb.100.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garfin D. E. One-dimensional gel electrophoresis. Methods Enzymol. 1990;182:425–441. doi: 10.1016/0076-6879(90)82035-z. [DOI] [PubMed] [Google Scholar]
  14. Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
  15. Guagliardi L. E., Koppelman B., Blum J. S., Marks M. S., Cresswell P., Brodsky F. M. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0. [DOI] [PubMed] [Google Scholar]
  16. Guyre P. M., Graziano R. F., Vance B. A., Morganelli P. M., Fanger M. W. Monoclonal antibodies that bind to distinct epitopes on Fc gamma RI are able to trigger receptor function. J Immunol. 1989 Sep 1;143(5):1650–1655. [PubMed] [Google Scholar]
  17. Hanewinkel H., Glössl J., Kresse H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem. 1987 Sep 5;262(25):12351–12355. [PubMed] [Google Scholar]
  18. Jahraus A., Storrie B., Griffiths G., Desjardins M. Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosome compartment. J Cell Sci. 1994 Jan;107(Pt 1):145–157. doi: 10.1242/jcs.107.1.145. [DOI] [PubMed] [Google Scholar]
  19. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  20. Mason R. W., Bartholomew L. T., Hardwick B. S. The use of benzyloxycarbonyl[125I]iodotyrosylalanyldiazomethane as a probe for active cysteine proteinases in human tissues. Biochem J. 1989 Nov 1;263(3):945–949. doi: 10.1042/bj2630945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mason R. W., Green G. D., Barrett A. J. Human liver cathepsin L. Biochem J. 1985 Feb 15;226(1):233–241. doi: 10.1042/bj2260233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nishimura Y., Kato K., Furuno K., Himeno M. Inhibitory effect of leupeptin on the intracellular maturation of lysosomal cathepsin L in primary cultures of rat hepatocytes. Biol Pharm Bull. 1995 Jul;18(7):945–950. doi: 10.1248/bpb.18.945. [DOI] [PubMed] [Google Scholar]
  24. Reddy V. Y., Zhang Q. Y., Weiss S. J. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3849–3853. doi: 10.1073/pnas.92.9.3849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Runquist E. A., Havel R. J. Acid hydrolases in early and late endosome fractions from rat liver. J Biol Chem. 1991 Nov 25;266(33):22557–22563. [PubMed] [Google Scholar]
  26. Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wilcox D., Mason R. W. Inhibition of cysteine proteinases in lysosomes and whole cells. Biochem J. 1992 Jul 15;285(Pt 2):495–502. doi: 10.1042/bj2850495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson R. B., Mastick C. C., Murphy R. F. A Chinese hamster ovary cell line with a temperature-conditional defect in receptor recycling is pleiotropically defective in lysosome biogenesis. J Biol Chem. 1993 Dec 5;268(34):25357–25363. [PubMed] [Google Scholar]
  29. Wolf P. R., Ploegh H. L. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol. 1995;11:267–306. doi: 10.1146/annurev.cb.11.110195.001411. [DOI] [PubMed] [Google Scholar]
  30. Xing R., Addington A. K., Mason R. W. Quantification of cathepsins B and L in cells. Biochem J. 1998 Jun 1;332(Pt 2):499–505. doi: 10.1042/bj3320499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xing R., Wu F., Mason R. W. Control of breast tumor cell growth using a targeted cysteine protease inhibitor. Cancer Res. 1998 Mar 1;58(5):904–909. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES