Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):675–680. doi: 10.1042/bj3360675

Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis.

Z Tu 1, M W Anders 1
PMCID: PMC1219919  PMID: 9841880

Abstract

Glutamate-cysteine ligase (GLCL) catalyses the rate-limiting step in glutathione biosynthesis. To identify cysteine residues in GLCL that are involved in its activity, eight conserved cysteine residues in human GLCL catalytic subunit (hGLCLC) were replaced with glycine residues by PCR-based site-directed mutagenesis. Both recombinant hGLCLC and hGLCL holoenzyme were expressed and purified with a baculovirus expression system. The activity of purified hGLCL holoenzyme with the mutant hGLCLC-C553G was 110+/-12 micromol/h per mg of protein compared with 370+/-20 micromol/h per mg of protein for the wild-type. Holoenzymes with hGLCLC-C52G, -C248G, -C249G, -C295G, -C491G, -C501G or -C605G showed activities similar to the wild type. The Km values of hGLCL containing hGLCLC-C553G were slightly lower than those of the wild type, indicating that the replacement of cysteine-553 with Gly in hGLCLC did not significantly affect substrate binding by the enzyme. hGLCLC-C553G was more easily dissociated from hGLCLR than the wild-type hGLCLC. GLCL activity increased by 11% after hGLCLC-C553G was incubated with an equimolar amount of purified hGLCL regulatory subunit (hGLCLR) at room temperature for 30 min, but increased by 110% after wild-type hGLCLC was incubated with hGLCLR for 10 min. These results indicate that cysteine-553 in hGLCLC is involved in heterodimer formation between hGLCLC and hGLCLR.

Full Text

The Full Text of this article is available as a PDF (143.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. Beamer R. L., Griffith O. W., Gass J. D., Anderson M. E., Meister A. Interaction of L- and D-3-amino-1-chloro-2-pentanone with gamma-glutamylcysteine synthetase. J Biol Chem. 1980 Dec 25;255(24):11732–11736. [PubMed] [Google Scholar]
  3. Coblenz A., Wolf K. Gcs1, a gene encoding gamma-glutamylcysteine synthetase in the fission yeast Schizosaccharomyces pombe. Yeast. 1995 Sep 30;11(12):1171–1177. doi: 10.1002/yea.320111207. [DOI] [PubMed] [Google Scholar]
  4. Flaman J. M., Frebourg T., Moreau V., Charbonnier F., Martin C., Ishioka C., Friend S. H., Iggo R. A rapid PCR fidelity assay. Nucleic Acids Res. 1994 Aug 11;22(15):3259–3260. doi: 10.1093/nar/22.15.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Friebe A., Wedel B., Harteneck C., Foerster J., Schultz G., Koesling D. Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry. 1997 Feb 11;36(6):1194–1198. doi: 10.1021/bi962047w. [DOI] [PubMed] [Google Scholar]
  6. Gipp J. J., Bailey H. H., Mulcahy R. T. Cloning and sequencing of the cDNA for the light subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun. 1995 Jan 17;206(2):584–589. doi: 10.1006/bbrc.1995.1083. [DOI] [PubMed] [Google Scholar]
  7. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  8. Huang C. S., Anderson M. E., Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 25;268(27):20578–20583. [PubMed] [Google Scholar]
  9. Huang C. S., Chang L. S., Anderson M. E., Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1993 Sep 15;268(26):19675–19680. [PubMed] [Google Scholar]
  10. Huang C. S., Moore W. R., Meister A. On the active site thiol of gamma-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2464–2468. doi: 10.1073/pnas.85.8.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kang Y., Oiao X., Jurma O., Knusel B., Andersen J. K. Cloning/brain localization of mouse glutamylcysteine synthetase heavy chain mRNA. Neuroreport. 1997 May 27;8(8):2053–2060. doi: 10.1097/00001756-199705260-00049. [DOI] [PubMed] [Google Scholar]
  12. Keynan S., Habgood N. T., Hooper N. M., Turner A. J. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Biochemistry. 1996 Sep 24;35(38):12511–12517. doi: 10.1021/bi961193z. [DOI] [PubMed] [Google Scholar]
  13. Lebo R. V., Kredich N. M. Inactivation of human gamma-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme-ligand complexes. J Biol Chem. 1978 Apr 25;253(8):2615–2623. [PubMed] [Google Scholar]
  14. Lueder D. V., Phillips M. A. Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J Biol Chem. 1996 Jul 19;271(29):17485–17490. doi: 10.1074/jbc.271.29.17485. [DOI] [PubMed] [Google Scholar]
  15. Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
  16. May M. J., Leaver C. J. Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10059–10063. doi: 10.1073/pnas.91.21.10059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mulcahy R. T., Bailey H. H., Gipp J. J. Transfection of complementary DNAs for the heavy and light subunits of human gamma-glutamylcysteine synthetase results in an elevation of intracellular glutathione and resistance to melphalan. Cancer Res. 1995 Nov 1;55(21):4771–4775. [PubMed] [Google Scholar]
  18. Mulcahy R. T., Wartman M. A., Bailey H. H., Gipp J. J. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem. 1997 Mar 14;272(11):7445–7454. doi: 10.1074/jbc.272.11.7445. [DOI] [PubMed] [Google Scholar]
  19. Powles R., Deane S., Rawlings D. The gene for gamma-glutamylcysteine synthetase from Thiobacillus ferrooxidans has low homology to its Escherichia coli equivalent and is linked to the gene for citrate synthase. Microbiology. 1996 Sep;142(Pt 9):2543–2548. doi: 10.1099/00221287-142-9-2543. [DOI] [PubMed] [Google Scholar]
  20. Reid L. L., Botta D., Shao J., Hudson F. N., Kavanagh T. J. Molecular cloning and sequencing of the cDNA encoding mouse glutamate-cysteine ligase regulatory subunit. Biochim Biophys Acta. 1997 Aug 7;1353(2):107–110. doi: 10.1016/s0167-4781(97)00092-4. [DOI] [PubMed] [Google Scholar]
  21. Seelig G. F., Meister A. Cystamine-Sepharose. A probe for the active site of gamma-glutamylcysteine synthetase. J Biol Chem. 1982 May 10;257(9):5092–5096. [PubMed] [Google Scholar]
  22. Seelig G. F., Meister A. Gamma-glutamylcysteine synthetase. Interactions of an essential sulfhydryl group. J Biol Chem. 1984 Mar 25;259(6):3534–3538. [PubMed] [Google Scholar]
  23. Seelig G. F., Simondsen R. P., Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem. 1984 Aug 10;259(15):9345–9347. [PubMed] [Google Scholar]
  24. Sierra-Rivera E., Dasouki M., Summar M. L., Krishnamani M. R., Meredith M., Rao P. N., Phillips J. A., 3rd, Freeman M. L. Assignment of the human gene (GLCLR) that encodes the regulatory subunit of gamma-glutamylcysteine synthetase to chromosome 1p21. Cytogenet Cell Genet. 1996;72(2-3):252–254. doi: 10.1159/000134202. [DOI] [PubMed] [Google Scholar]
  25. Sierra-Rivera E., Summar M. L., Dasouki M., Krishnamani M. R., Phillips J. A., Freeman M. L. Assignment of the gene (GLCLC) that encodes the heavy subunit of gamma-glutamylcysteine synthetase to human chromosome 6. Cytogenet Cell Genet. 1995;70(3-4):278–279. doi: 10.1159/000134051. [DOI] [PubMed] [Google Scholar]
  26. Taiz L., Nelson H., Maggert K., Morgan L., Yatabe B., Taiz S. L., Rubinstein B., Nelson N. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. Biochim Biophys Acta. 1994 Sep 14;1194(2):329–334. doi: 10.1016/0005-2736(94)90315-8. [DOI] [PubMed] [Google Scholar]
  27. Tu Z., Anders M. W. Expression and characterization of human glutamate-cysteine ligase. Arch Biochem Biophys. 1998 Jun 15;354(2):247–254. doi: 10.1006/abbi.1998.0676. [DOI] [PubMed] [Google Scholar]
  28. Watanabe K., Yamano Y., Murata K., Kimura A. The nucleotide sequence of the gene for gamma-glutamylcysteine synthetase of Escherichia coli. Nucleic Acids Res. 1986 Jun 11;14(11):4393–4400. doi: 10.1093/nar/14.11.4393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiner M. P., Costa G. L., Schoettlin W., Cline J., Mathur E., Bauer J. C. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene. 1994 Dec 30;151(1-2):119–123. doi: 10.1016/0378-1119(94)90641-6. [DOI] [PubMed] [Google Scholar]
  30. Yan N., Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem. 1990 Jan 25;265(3):1588–1593. [PubMed] [Google Scholar]
  31. Zhang J. L., Patel J. M., Li Y. D., Block E. R. Reductase domain cysteines 1048 and 1114 are critical for catalytic activity of human endothelial cell nitric oxide synthase as probed by site-directed mutagenesis. Biochem Biophys Res Commun. 1996 Sep 4;226(1):293–300. doi: 10.1006/bbrc.1996.1348. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES