Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):681–687. doi: 10.1042/bj3360681

Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress).

L N Sokolov 1, A Déjardin 1, L A Kleczkowski 1
PMCID: PMC1219920  PMID: 9841881

Abstract

Expression of four Arabidopsis (thale cress) genes corresponding to the small (ApS) and large subunits (ApL1, ApL2, ApL3) of ADP-glucose pyrophosphorylase (AGPase), a key enzyme of starch biosynthesis, was found to be profoundly and differentially regulated by sugar and light/dark exposures. Transcript levels of both ApL2 and ApL3, and to a lesser extent ApS, increased severalfold upon feeding sucrose or glucose to the detached leaves in the dark, whereas the mRNA content for ApL1 decreased under the same conditions. Glucose was, in general, less effective than sucrose in inducing regulation of AGPase genes, possibly due to observed limitations in its uptake when compared with sucrose uptake by detached leaves. Osmotic agents [sorbitol, poly(ethylene glycol)] had no effect on ApS, ApL2 and ApL3 transcript level, but they did mimic the effect of sucrose on ApL1 gene, suggesting that the latter is regulated by osmotic pressure rather than any particular sugar. For all the genes the sugar effect was closely mimicked by an exposure of the dark-pre-adapted leaves to the light. Under both dark and light conditions, sucrose fed to the detached leaves was found to be rapidly metabolized to hexoses and, to some extent, starch. Starch production reflected most probably an increase in substrate availability for AGPase reaction rather than being due to changes in AGPase protein content, since both the sugar feeding and light exposure had little or no effect on the activity of AGPase or on the levels of its small and large subunit proteins in leaf extracts. The data suggest tight translational or post-translational control, but they may also reflect spatial control of AGPase gene expression within a leaf. The sugar/light-dependent regulation of AGPase gene expression may represent a part of a general cellular response to the availability/allocation of carbohydrates during photosynthesis.

Full Text

The Full Text of this article is available as a PDF (211.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae J. M., Liu J. R. Molecular cloning and characterization of two novel isoforms of the small subunit of ADPglucose pyrophosphorylase from sweet potato. Mol Gen Genet. 1997 Mar 26;254(2):179–185. doi: 10.1007/s004380050406. [DOI] [PubMed] [Google Scholar]
  2. Burgess D., Penton A., Dunsmuir P., Dooner H. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons. Plant Mol Biol. 1997 Feb;33(3):431–444. doi: 10.1023/a:1005752311130. [DOI] [PubMed] [Google Scholar]
  3. Chen B. Y., Janes H. W. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit. Plant Physiol. 1997 Jan;113(1):235–241. doi: 10.1104/pp.113.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Dijkwel P. P., Huijser C., Weisbeek P. J., Chua N. H., Smeekens S. C. Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell. 1997 Apr;9(4):583–595. doi: 10.1105/tpc.9.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giroux M. J., Hannah L. C. ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet. 1994 May 25;243(4):400–408. doi: 10.1007/BF00280470. [DOI] [PubMed] [Google Scholar]
  8. Goldschmidt E. E., Huber S. C. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 1992 Aug;99(4):1443–1448. doi: 10.1104/pp.99.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herbers K., Meuwly P., Frommer W. B., Metraux J. P., Sonnewald U. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. Plant Cell. 1996 May;8(5):793–803. doi: 10.1105/tpc.8.5.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hylton C., Smith A. M. The rb Mutation of Peas Causes Structural and Regulatory Changes in ADP Glucose Pyrophosphorylase from Developing Embryos. Plant Physiol. 1992 Aug;99(4):1626–1634. doi: 10.1104/pp.99.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jang J. C., León P., Zhou L., Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997 Jan;9(1):5–19. doi: 10.1105/tpc.9.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kleczkowski L. A., Villand P., Lüthi E., Olsen O. A., Preiss J. Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol. 1993 Jan;101(1):179–186. doi: 10.1104/pp.101.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleczkowski L. A., Villand P., Preiss J., Olsen O. A. Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J Biol Chem. 1993 Mar 25;268(9):6228–6233. [PubMed] [Google Scholar]
  14. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  15. Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krishnan H. B., Reeves C. D., Okita T. W. ADPglucose Pyrophosphorylase Is Encoded by Different mRNA Transcripts in Leaf and Endosperm of Cereals. Plant Physiol. 1986 Jun;81(2):642–645. doi: 10.1104/pp.81.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. La Cognata U., Willmitzer L., Müller-Röber B. Molecular cloning and characterization of novel isoforms of potato ADP-glucose pyrophosphorylase. Mol Gen Genet. 1995 Mar 10;246(5):538–548. doi: 10.1007/BF00298960. [DOI] [PubMed] [Google Scholar]
  18. Martin T., Hellmann H., Schmidt R., Willmitzer L., Frommer W. B. Identification of mutants in metabolically regulated gene expression. Plant J. 1997 Jan;11(1):53–62. doi: 10.1046/j.1365-313x.1997.11010053.x. [DOI] [PubMed] [Google Scholar]
  19. Mita S., Murano N., Akaike M., Nakamura K. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 1997 Apr;11(4):841–851. doi: 10.1046/j.1365-313x.1997.11040841.x. [DOI] [PubMed] [Google Scholar]
  20. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  21. Müller-Röber B., La Cognata U., Sonnewald U., Willmitzer L. A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants. Plant Cell. 1994 May;6(5):601–612. [PMC free article] [PubMed] [Google Scholar]
  22. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakata P. A., Okita T. W. Differential Regulation of ADP-Glucose Pyrophosphorylase in the Sink and Source Tissues of Potato. Plant Physiol. 1995 May;108(1):361–368. doi: 10.1104/pp.108.1.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith A. M., Denyer K., Martin C. R. What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 1995 Mar;107(3):673–677. doi: 10.1104/pp.107.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takeda S., Mano S., Ohto Ma., Nakamura K. Inhibitors of Protein Phosphatases 1 and 2A Block the Sugar-Inducible Gene Expression in Plants. Plant Physiol. 1994 Oct;106(2):567–574. doi: 10.1104/pp.106.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Villand P., Aalen R., Olsen O. A., Lüthi E., Lönneborg A., Kleczkowski L. A. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues. Plant Mol Biol. 1992 Jun;19(3):381–389. doi: 10.1007/BF00023385. [DOI] [PubMed] [Google Scholar]
  27. Villand P., Olsen O. A., Kleczkowski L. A. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol. 1993 Dec;23(6):1279–1284. doi: 10.1007/BF00042361. [DOI] [PubMed] [Google Scholar]
  28. Wang S. M., Chu B., Lue W. L., Yu T. S., Eimert K., Chen J. adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J. 1997 May;11(5):1121–1126. doi: 10.1046/j.1365-313x.1997.11051121.x. [DOI] [PubMed] [Google Scholar]
  29. Weber H., Heim U., Borisjuk L., Wobus U. Cell-type specific, coordinate expression of two ADP-glucose pyrophosphorylase genes in relation to starch biosynthesis during seed development of Vicia faba L. Planta. 1995;195(3):352–361. doi: 10.1007/BF00202592. [DOI] [PubMed] [Google Scholar]
  30. Yu S. M., Lee Y. C., Fang S. C., Chan M. T., Hwa S. F., Liu L. F. Sugars act as signal molecules and osmotica to regulate the expression of alpha-amylase genes and metabolic activities in germinating cereal grains. Plant Mol Biol. 1996 Mar;30(6):1277–1289. doi: 10.1007/BF00019558. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES