Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Dec 15;336(Pt 3):689–697. doi: 10.1042/bj3360689

Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

A Denys 1, F Allain 1, M Carpentier 1, G Spik 1
PMCID: PMC1219921  PMID: 9841882

Abstract

Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.

Full Text

The Full Text of this article is available as a PDF (155.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F., Boutillon C., Mariller C., Spik G. Selective assay for CyPA and CyPB in human blood using highly specific anti-peptide antibodies. J Immunol Methods. 1995 Jan 13;178(1):113–120. doi: 10.1016/0022-1759(94)00249-v. [DOI] [PubMed] [Google Scholar]
  2. Allain F., Denys A., Spik G. Characterization of surface binding sites for cyclophilin B on a human tumor T-cell line. J Biol Chem. 1994 Jun 17;269(24):16537–16540. [PubMed] [Google Scholar]
  3. Allain F., Denys A., Spik G. Cyclophilin B mediates cyclosporin A incorporation in human blood T-lymphocytes through the specific binding of complexed drug to the cell surface. Biochem J. 1996 Jul 15;317(Pt 2):565–570. doi: 10.1042/bj3170565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arber S., Krause K. H., Caroni P. s-cyclophilin is retained intracellularly via a unique COOH-terminal sequence and colocalizes with the calcium storage protein calreticulin. J Cell Biol. 1992 Jan;116(1):113–125. doi: 10.1083/jcb.116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bram R. J., Hung D. T., Martin P. K., Schreiber S. L., Crabtree G. R. Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol. 1993 Aug;13(8):4760–4769. doi: 10.1128/mcb.13.8.4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
  7. Denys A., Allain F., Foxwell B., Spik G. Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes. Immunology. 1997 Aug;91(4):609–617. doi: 10.1046/j.1365-2567.1997.00296.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denys A., Allain F., Masy E., Dessaint J. P., Spik G. Enhancing the effect of secreted cyclophilin B on immunosuppressive activity of cyclosporine. Transplantation. 1998 Apr 27;65(8):1076–1084. doi: 10.1097/00007890-199804270-00012. [DOI] [PubMed] [Google Scholar]
  9. Endrich M. M., Gehring H. The V3 loop of human immunodeficiency virus type-1 envelope protein is a high-affinity ligand for immunophilins present in human blood. Eur J Biochem. 1998 Mar 15;252(3):441–446. doi: 10.1046/j.1432-1327.1998.2520441.x. [DOI] [PubMed] [Google Scholar]
  10. Friedman J., Trahey M., Weissman I. Cloning and characterization of cyclophilin C-associated protein: a candidate natural cellular ligand for cyclophilin C. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6815–6819. doi: 10.1073/pnas.90.14.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedman J., Weissman I. Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: one in the presence and one in the absence of CsA. Cell. 1991 Aug 23;66(4):799–806. doi: 10.1016/0092-8674(91)90123-g. [DOI] [PubMed] [Google Scholar]
  12. Galat A., Bouet F. Cyclophilin-B is an abundant protein whose conformation is similar to cyclophilin-A. FEBS Lett. 1994 Jun 20;347(1):31–36. doi: 10.1016/0014-5793(94)00501-x. [DOI] [PubMed] [Google Scholar]
  13. Galat A., Metcalfe S. M. Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol. 1995;63(1):67–118. doi: 10.1016/0079-6107(94)00009-x. [DOI] [PubMed] [Google Scholar]
  14. González-Cuadrado S., Bustos C., Ruiz-Ortega M., Ortiz A., Guijarro C., Plaza J. J., Egido J. Expression of leucocyte chemoattractants by interstitial renal fibroblasts: up-regulation by drugs associated with interstitial fibrosis. Clin Exp Immunol. 1996 Dec;106(3):518–522. doi: 10.1046/j.1365-2249.1996.d01-864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haendler B., Hofer E. Characterization of the human cyclophilin gene and of related processed pseudogenes. Eur J Biochem. 1990 Jul 5;190(3):477–482. doi: 10.1111/j.1432-1033.1990.tb15598.x. [DOI] [PubMed] [Google Scholar]
  16. Handschumacher R. E., Harding M. W., Rice J., Drugge R. J., Speicher D. W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544–547. doi: 10.1126/science.6238408. [DOI] [PubMed] [Google Scholar]
  17. Harding M. W., Handschumacher R. E., Speicher D. W. Isolation and amino acid sequence of cyclophilin. J Biol Chem. 1986 Jun 25;261(18):8547–8555. [PubMed] [Google Scholar]
  18. Hasel K. W., Glass J. R., Godbout M., Sutcliffe J. G. An endoplasmic reticulum-specific cyclophilin. Mol Cell Biol. 1991 Jul;11(7):3484–3491. doi: 10.1128/mcb.11.7.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jalkanen S., Jalkanen M., Bargatze R., Tammi M., Butcher E. C. Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J Immunol. 1988 Sep 1;141(5):1615–1623. [PubMed] [Google Scholar]
  20. Kay J. E. Structure-function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis-trans isomerases. Biochem J. 1996 Mar 1;314(Pt 2):361–385. [PMC free article] [PubMed] [Google Scholar]
  21. Legrand D., van Berkel P. H., Salmon V., van Veen H. A., Slomianny M. C., Nuijens J. H., Spik G. The N-terminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochem J. 1997 Nov 1;327(Pt 3):841–846. doi: 10.1042/bj3270841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  23. Mariller C., Allain F., Kouach M., Spik G. Evidence that human milk isolated cyclophilin B corresponds to a truncated form. Biochim Biophys Acta. 1996 Mar 7;1293(1):31–38. doi: 10.1016/0167-4838(95)00230-8. [DOI] [PubMed] [Google Scholar]
  24. Mariller C., Haendler B., Allain F., Denys A., Spik G. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites. Biochem J. 1996 Jul 15;317(Pt 2):571–576. doi: 10.1042/bj3170571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Massagué J. Epidermal growth factor-like transforming growth factor. II. Interaction with epidermal growth factor receptors in human placenta membranes and A431 cells. J Biol Chem. 1983 Nov 25;258(22):13614–13620. [PubMed] [Google Scholar]
  26. Mikol V., Kallen J., Walkinshaw M. D. X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5183–5186. doi: 10.1073/pnas.91.11.5183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohe Y., Ishikawa K., Itoh Z., Tatemoto K. Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J Neurochem. 1996 Sep;67(3):964–971. doi: 10.1046/j.1471-4159.1996.67030964.x. [DOI] [PubMed] [Google Scholar]
  28. Oravecz T., Pall M., Wang J., Roderiquez G., Ditto M., Norcross M. A. Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J Immunol. 1997 Nov 1;159(9):4587–4592. [PubMed] [Google Scholar]
  29. Price E. R., Zydowsky L. D., Jin M. J., Baker C. H., McKeon F. D., Walsh C. T. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1903–1907. doi: 10.1073/pnas.88.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sant A. J., Cullen S. E., Schwartz B. D. Biosynthetic relationships of the chondroitin sulfate proteoglycan with Ia and invariant chain glycoproteins. J Immunol. 1985 Jul;135(1):416–422. [PubMed] [Google Scholar]
  31. Schneider H., Charara N., Schmitz R., Wehrli S., Mikol V., Zurini M. G., Quesniaux V. F., Movva N. R. Human cyclophilin C: primary structure, tissue distribution, and determination of binding specificity for cyclosporins. Biochemistry. 1994 Jul 12;33(27):8218–8224. doi: 10.1021/bi00193a007. [DOI] [PubMed] [Google Scholar]
  32. Sherry B., Zybarth G., Alfano M., Dubrovsky L., Mitchell R., Rich D., Ulrich P., Bucala R., Cerami A., Bukrinsky M. Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1758–1763. doi: 10.1073/pnas.95.4.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spik G., Haendler B., Delmas O., Mariller C., Chamoux M., Maes P., Tartar A., Montreuil J., Stedman K., Kocher H. P. A novel secreted cyclophilin-like protein (SCYLP). J Biol Chem. 1991 Jun 15;266(17):10735–10738. [PubMed] [Google Scholar]
  34. Tanaka Y., Adams D. H., Shaw S. Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today. 1993 Mar;14(3):111–115. doi: 10.1016/0167-5699(93)90209-4. [DOI] [PubMed] [Google Scholar]
  35. Tegeder I., Schumacher A., John S., Geiger H., Geisslinger G., Bang H., Brune K. Elevated serum cyclophilin levels in patients with severe sepsis. J Clin Immunol. 1997 Sep;17(5):380–386. doi: 10.1023/a:1027364207544. [DOI] [PubMed] [Google Scholar]
  36. Twining S. S. Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem. 1984 Nov 15;143(1):30–34. doi: 10.1016/0003-2697(84)90553-0. [DOI] [PubMed] [Google Scholar]
  37. Webb L. M., Ehrengruber M. U., Clark-Lewis I., Baggiolini M., Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7158–7162. doi: 10.1073/pnas.90.15.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilson A. P., Rider C. C. Murine T lymphocytes and T-lymphoma cells produce chondroitin sulphate and heparan sulphate proteoglycans and free heparan sulphate glycosaminoglycan. Immunology. 1991 Jan;72(1):27–33. [PMC free article] [PubMed] [Google Scholar]
  39. Yamada Y., Amagasaki T., Jacobsen D. W., Green R. Lactoferrin binding by leukemia cell lines. Blood. 1987 Jul;70(1):264–270. [PubMed] [Google Scholar]
  40. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  41. von Wartburg A., Traber R. Chemistry of the natural cyclosporin metabolites. Prog Allergy. 1986;38:28–45. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES